**********
User Guide
**********
..
Copyright (C) Dragan Nikolic
DAE Tools is free software; you can redistribute it and/or modify it under the
terms of the GNU General Public License version 3 as published by the Free Software
Foundation. DAE Tools is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with the
DAE Tools software; if not, see .
.. contents::
:local:
:depth: 3
:backlinks: none
Importing DAE Tools modules
===========================
**DAE Tools** are loaded by importing :py:mod:`daetools.pyDAE` Python module:
.. code-block:: python
from daetools.pyDAE import *
This sets the python `sys.path` for importing the platform dependent extension modules
(i.e. `.../daetools/pyDAE/Windows_win32_py34` and `.../daetools/solvers/Windows_win32_py34` in Windows,
`.../daetools/pyDAE/Linux_x86_64_py34` and `.../daetools/solvers/Linux_x86_64_py34` in GNU/Linux),
import all symbols from all :py:mod:`~daetools.pyDAE` modules: :py:mod:`~pyCore`,
:py:mod:`~pyActivity`, :py:mod:`~pyDataReporting`, :py:mod:`~pyIDAS`,
:py:mod:`~pyUnits` and import some platform independent modules: :py:mod:`~daetools.pyDAE.logs`,
:py:mod:`~daetools.pyDAE.variable_types`, :py:mod:`~daetools.pyDAE.hr_upwind_scheme`,
:py:mod:`~daetools.dae_simulator.simulator`, :py:mod:`~daetools.dae_simulator.simulation_explorer`,
:py:mod:`~daetools.dae_simulator.simulation_inspector`, :py:mod:`~daetools.pyDAE.thermo_packages`.
Alternatively, the :py:mod:`daetools.pyDAE` module can be imported and classes from the
:py:mod:`~daetools.pyDAE` extension modules accessed using the fully qualified names.
For instance:
.. code-block:: python
import daetools.pyDAE
model = daetools.pyDAE.pyCore.daeModel("name")
Once the :py:mod:`daetools.pyDAE` module is loaded, the other modules (such as third party linear solvers,
optimisation solvers etc.) can be imported.
Since domains, parameters and variables in **DAE Tools** have a numerical value in terms
of a unit of measurement (:py:class:`~pyUnits.quantity`) the modules containing definitions of
units and variable types must be imported:
.. code-block:: python
from daetools.pyDAE.variable_types import length_t, area_t, volume_t
from daetools.pyDAE.pyUnits import m, kg, s, K, Pa, J, W
The complete list of units and variable types can be found in
:py:mod:`~daetools.pyDAE.variable_types` and :py:mod:`pyUnits` modules.
Developing models
=================
**DAE Tools** models are developed by deriving a class from the base :py:class:`~pyCore.daeModel`:
.. code-block:: python
class myModel(daeModel):
def __init__(self, name, parent = None, description = ""):
daeModel.__init__(self, name, parent, description)
# Declaration/instantiation of domains, parameters, variables, ports, etc:
...
def DeclareEquations(self):
# Declaration of equations, state transition networks etc.:
...
Every model definition requires specification of the model structure and its functionality in two phases:
1. Declaring the model structure (domains, parameters, variables, ports, components etc.) in the
:py:meth:`~pyCore.daeModel.__init__` function:
In **DAE Tools** the model specification is separated from the activities that can be performed on the model.
This way, based on a single model definition different simulation scenarios can be developed.
Thus, all objects are specified in two stages:
* Declaration in the :py:meth:`~pyCore.daeModel.__init__` function
* Initialisation of domains and parameters in :py:meth:`~pyActivity.daeSimulation.SetUpParametersAndDomains` and
variables in :py:meth:`~pyActivity.daeSimulation.SetUpVariables` function.
Therefore, parameters, domains and variables are only declared here, while their initialisation
(i.e. setting parameter values or initial conditions) is postponed and performed in the simulation class.
All objects must be stored in the model since the base :py:class:`~pyCore.daeModel`
class keeps only week references to them:
.. code-block:: python
def __init__(self, name, parent = None, description = ""):
self.domain = daeDomain(...)
self.parameter = daeParameter(...)
self.variable = daeVariable(...)
... etc.
and not:
.. code-block:: python
def __init__(self, name, parent = None, description = ""):
domain = daeDomain(...)
parameter = daeParameter(...)
variable = daeVariable(...)
... etc.
because at the exit from the :py:meth:`~pyCore.daeModel.__init__` function the objects
will go out of scope and get destroyed. However, the underlying c++ model still holds
pointers which eventually results in the segmentation fault.
2. Specification of the model functionality (equations, state transition networks,
and `OnEvent` and `OnCondition` actions)
in the :py:meth:`~pyCore.daeModel.DeclareEquations` function.
**Nota bene**: This function is never called directly by the user and will be called automatically
by the framework.
Initialisation of the simulation object is carried out in several phases.
At the point when this function is called by the framework,
the model parameters, domains, variables etc. are fully initialised.
Therefore, it is safe to obtain the values of parameters or domain points and use them to
create equations at the run-time.
**Nota bene**: However, the **variable values** are obviously **not available** at this moment
(they get initialised at the later stage) and using the variable values during the model specification
phase is not allowed.
A simplest **DAE Tools** model with a description of all steps/tasks necessary to develop a model
can be found in the :ref:`whats_the_time` tutorial (`whats_the_time.py <../../examples/whats_the_time.html>`_).
Parameters
----------
Parameters are time invariant quantities that do not change during
a simulation. Usually a good choice what should be a parameter is a
physical constant, number of discretisation points in a domain etc.
Again, parameters are defined in two phases:
* Declaration in the :py:meth:`~pyCore.daeModel.__init__` function
* Initialisation (by setting its value) in the :py:meth:`~pyActivity.daeSimulation.SetUpParametersAndDomains` function
Declaring parameters
~~~~~~~~~~~~~~~~~~~~
Parameters are declared in the :py:meth:`~pyCore.daeModel.__init__` function:
.. code-block:: python
self.myParam = daeParameter("myParam", units, parentModel, "description")
Parameters can also be distributed on domains:
.. code-block:: python
self.myParam = daeParameter("myParam", units, parentModel, "description")
self.myParam.DistributeOnDomain(myDomain)
# Or simply:
self.myParam = daeParameter("myParam", units, parentModel, "description", [myDomain])
Initialising parameters
~~~~~~~~~~~~~~~~~~~~~~~
Parameters are initialised in the :py:meth:`~pyActivity.daeSimulation.SetUpParametersAndDomains` function:
.. code-block:: python
# Ordinary parameters:
myParam.SetValue(value)
# Distributed parameters (one-dimensional):
for i in range(myDomain.NumberOfPoints):
myParam.SetValue(i, value)
where `value` can be either a floating point number or the :py:class:`~pyUnits.quantity` object (i.e. 1.34 * W/(m*K)).
If the simple floats are used it is assumed that they represent values with the same units as in the parameter definition.
.. topic:: Nota bene
`DAE Tools` (as it is the case in C/C++ and Python) use `zero-based arrays`
in which the `initial element of a sequence is assigned the index 0`, rather than 1.
In addition, all values in a distributed parameter can be set in a single call:
.. code-block:: python
myParam.SetValues(values)
where `values` is a numpy array of floats/quantity objects.
Using parameters
~~~~~~~~~~~~~~~~
Model equations consist of mathematical operations and functions that operate on :py:class:`~pyCore.adouble` and
:py:class:`~pyCore.adouble_array` objects.
They contain information about the functions and operands in the :py:attr:`~pyCore.adouble.Node` attribute.
:py:class:`~pyCore.adouble` objects contain the values of parameters and variables while
:py:class:`~pyCore.adouble_array` objects contain arrays of values.
1. A parameter value can be obtained using the :py:meth:`~pyCore.daeParameter.__call__` function (`operator ()`)
which returns the :py:class:`~pyCore.adouble` object.
For instance, the equation:
.. math::
myVar = myParam + 15
is specified in the following (acausal) way:
.. code-block:: python
# Notation:
# - eq is a daeEquation object created using the model.CreateEquation(...) function
# - myParam is an ordinary daeParameter object (not distributed)
# - myVar is an ordinary daeVariable (not distributed)
eq.Residual = myVar() - (myParam() + 15)
The same function is used for distributed parameters.
For instance, the equation:
.. math::
myVar(i) = myParam(i) + 15; \forall i \in [0, n_d - 1]
is given as:
.. code-block:: python
# Notation:
# - myDomain is daeDomain object
# - eq is a daeEquation object distributed on myDomain
# - i is daeDistributedEquationDomainInfo object (used to iterate through the domain points)
# - myParam is daeParameter object distributed on myDomain
# - myVar is daeVariable object distributed on myDomain
i = eq.DistributeOnDomain(myDomain, eClosedClosed)
eq.Residual = myVar(i) - (myParam(i) + 15)
This code translates into a set of `n` algebraic equations.
Obviously, a parameter can be distributed on more than one domain.
The equation:
.. math::
myVar(d_1,d_2) = myParam(d_1,d_2) + 15; \forall d_1 \in [0, n_{d1} - 1], \forall d_2 \in [0, n_{d2} - 1]
is specified as:
.. code-block:: python
# Notation:
# - myDomain1, myDomain2 are daeDomain objects
# - eq is a daeEquation object distributed on the domains myDomain1 and myDomain2
# - i1, i2 are daeDistributedEquationDomainInfo objects (used to iterate through the domain points)
# - myParam is daeParameter object distributed on myDomain1 and myDomain2
# - myVar is daeVariable object distributed on myDomain1 and myDomain2
i1 = eq.DistributeOnDomain(myDomain1, eClosedClosed)
i2 = eq.DistributeOnDomain(myDomain2, eClosedClosed)
eq.Residual = myVar(i1,i2) - (myParam(i1,i2) + 15)
2. An array of parameter values can be obtained using the function :py:meth:`~pyCore.daeParameter.array`
which returns the :py:class:`~pyCore.adouble_array` object.
The function accepts the following type of arguments:
* integers (to select a single index from a domain); a special case is index `-1` that returns the last point in the domain)
* python list (to select a list of indexes from a domain)
* python slice (to select a portion of indexes from a domain: startIndex, endIindex, step)
* character '*' or an empty python list `[]` (to select all points from a domain)
.. Basically all arguments listed above are internally used to create the
:py:class:`~pyCore.daeIndexRange` object. :py:class:`~pyCore.daeIndexRange` constructor has
three variants:
1. The first one accepts a single argument: :py:class:`~pyCore.daeDomain` object.
In this case the returned :py:class:`~pyCore.adouble_array` object will contain the
parameter values at all points in the specified domain.
2. The second one accepts two arguments: :py:class:`~pyCore.daeDomain` object and a list
of integer that represent indexes within the specified domain.
In this case the returned :py:class:`~pyCore.adouble_array` object will contain the
parameter values at the selected points in the specified domain.
3. The third one accepts four arguments: :py:class:`~pyCore.daeDomain` object, and three
integers: `startIndex`, `endIndex` and `step` (which is basically a slice, that is
a portion of a list of indexes: `start` through `end-1`, by the increment `step`).
More info about slices can be found in the
`Python documentation `_.
In this case the returned :py:class:`~pyCore.adouble_array` object will contain the
parameter values at the points in the specified domain defined by the slice object.
For example, the equation:
.. math::
myVar = \sum myParam(0, *)
can be written in two ways:
.. code-block:: python
# Notation:
# - myDomain1, myDomain2 are daeDomain objects
# - n1, n2 are the number of points in myDomain1 and myDomain2 domains
# - eq is daeEquation objects
# - mySum is daeVariable object
# - myParam is daeParameter object distributed on myDomain1 and myDomain2 domains
# - values is the adouble_array object
# An array contains myParam values for:
# - the first point in the domain myDomain1
# - all points from the domain myDomain2
# The expressions below are equivalent:
values = myParam.array(0, '*')
values = myParam.array(0, [])
eq.Residual = mySum() - Sum(values)
The code translates into:
.. math::
mySum = myParam(0,0) + myParam(0,1) + ... + myParam(0,n_2 - 1)
where `n2` is the number of points in the domain `myDomain2`.
In addition, the function supports advanced indexing. For instance, the equation:
.. math::
myVar = \sum myParam([0,1,2], [even\_points\_in\_myDomain2])
is defined as:
.. code-block:: python
# An array contains the following values from myParam:
# - the first three points in the domain myDomain1
# - all even points from the domain myDomain2
values = myParam.array([0,1,2], slice(0, myDomain2.NumberOfPoints, 2))
eq.Residual = mySum() - Sum(values)
The code translates into:
.. math::
mySum = & myParam(0,0) + myParam(0,2) + myParam(0,4) + ... + myParam(0, n_2 - 1) + \\
& myParam(1,0) + myParam(1,2) + myParam(1,4) + ... + myParam(1, n_2 - 1) + \\
& myParam(2,0) + myParam(2,2) + myParam(2,4) + ... + myParam(2, n_2 - 1)
The property :py:attr:`~pyCore.daeParameter.npyValues` contains the parameter values as a numpy multi-dimensional array
(with 'numpy.float' data type).
.. topic:: Notate bene
The functions :py:meth:`~pyCore.daeParameter.__call__` and :py:meth:`~pyCore.daeParameter.array`
return :py:class:`~pyCore.adouble` and :py:class:`~pyCore.adouble_array` objects, respectively
and does not contain values. They are only used to specify equations' residual expressions
which are stored in their :py:attr:`pyCore.adouble.Node` / :py:attr:`pyCore.adouble_array.Node` properties.
Other functions (such as :py:attr:`~pyCore.daeParameter.npyValues` and :py:meth:`~pyCore.daeParameter.GetValue`)
can be used to access the values data during the simulation.
All above stands for similar functions in :py:class:`~pyCore.daeDomain` and :py:class:`~pyCore.daeVariable` classes.
More information about parameters can be found in the API reference :py:class:`~pyCore.daeParameter`
and in :doc:`tutorials`.
Variable types
--------------
Variable types describe variables and contain the information such as:
* Name: string
* Units: :py:class:`~pyUnits.unit` object
* LowerBound: float
* UpperBound: float
* InitialGuess: float
* AbsoluteTolerance: float
* ValueConstraint: enumeration :py:class:`~pyCore.daeeVariableValueConstraint`
Declaration of variable types is commonly done outside of the model definition (in the module scope):
.. code-block:: python
# Temperature type with units Kelvin, limits 100-1000K, the default value 273K and the absolute tolerance 1E-5
typeTemperature = daeVariableType("Temperature", K, 100, 1000, 273, 1E-5, constraint)
where the argument `constraint` specifies the value constraint and can be one of:
- eNoConstraint (default)
- eValueGTEQ: imposes >= 0 constraint
- eValueLTEQ: imposes <= 0 constraint
- eValueGT: imposes > 0 constraint
- eValueLT: imposes < 0 constraint
Distribution domains
--------------------
Domains in **DAE Tools** are used to to create simple arrays of variables, parameters, equations and ports
and their distributions in space.
They can define uniform (the default) or non-uniform grids (user-specified) and are defined in two phases:
* Declaring a domain in the model
* Initialising it in the simulation
Declaring domains
~~~~~~~~~~~~~~~~~
Domains are declared in the :py:meth:`~pyCore.daeModel.__init__` function:
.. code-block:: python
self.myDomain = daeDomain("myDomain", parentModel, units, "description")
Initialising domains
~~~~~~~~~~~~~~~~~~~~
Domains are initialised in the :py:meth:`~pyActivity.daeSimulation.SetUpParametersAndDomains` function.
Simple arrays are defined using the function :py:meth:`~pyCore.daeDomain.CreateArray`:
.. code-block:: python
# Array of N elements
myDomain.CreateArray(N)
while the domains distributed on a structured grid using the function
:py:meth:`~pyCore.daeDomain.CreateStructuredGrid`:
.. code-block:: python
# Uniform structured grid with N elements and bounds [lowerBound, upperBound]
myDomain.CreateStructuredGrid(N, lowerBound, upperBound)
where the lower and upper bounds are the floating point values or quantity objects.
If the floats are used it is assumed that they contain values with the same units as in the domain definition.
Using the quantities is advised (to avoid problems when the domain units change).
.. code-block:: python
# Uniform structured grid with 10 elements and bounds [0,1] in centimeters:
myDomain.CreateStructuredGrid(10, 0.0 * cm, 1.0 * cm)
.. topic:: Nota bene
Structured grids with `N` elements contain `N+1` points.
It is also possible to create an unstructured grid (for use in Finite Element models).
However, their structure is an implementation detail (i.e. as in deal.II).
In certain situations it is desired to have a non-uniform distribution
of the points within the given interval, defined by the lower and upper bounds.
In these cases, a non-uniform structured grid can be specified using the attribute
:py:attr:`~pyCore.daeDomain.Points` which contains the list of the points and that
can be manipulated by the user:
.. code-block:: python
# First create a structured grid domain
myDomain.CreateStructuredGrid(10, 0.0, 1.0)
# The original 11 points are: [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]
# If the system is stiff at the beginning of the domain more points can be placed there
myDomain.Points = [0.0, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.60, 1.00]
The effect of uniform and non-uniform grids is given
in :numref:`Figure-non_uniform_grid` (a simple heat conduction problem from the :ref:`tutorial3`
has been served as a basis for comparison). Here, there are three cases:
* Black line: the analytic solution
* Blue line (10 intervals): uniform grid - a very rough prediction
* Red line (10 intervals): non-uniform grid - more points at the beginning of the domain
.. _Figure-non_uniform_grid:
.. figure:: _static/NonUniformGrid.png
:width: 400 pt
:figwidth: 450 pt
:align: center
Effect of uniform and non-uniform grids on numerical solution (zoomed to the first 5 points)
More precise results are obtained by using denser grid at the beginning of the interval.
Using domains
~~~~~~~~~~~~~
The functions :py:meth:`~pyCore.daeDomain.__call__` (`operator ()`) and :py:meth:`~pyCore.daeDomain.__getitem__` (`operator []`)
are used to return the :py:class:`~pyCore.adouble` object with the value of the point
at the specified index within the domain. Both functions have the same functionality.
For instance, the equation:
.. math::
myVar = myDomain[5]
is specified in the following way:
.. code-block:: python
# Notation:
# - eq is a daeEquation object
# - myDomain is daeDomain object
# - myVar is daeVariable object
eq.Residual = myVar() - myDomain[5]
The function :py:meth:`~pyCore.daeDomain.array` returns the :py:class:`~pyCore.adouble_array`
object with an array of points. It accepts the same type of arguments as explained in the section `Using parameters`_.
The property :py:attr:`~pyCore.daeDomain.Points` contains a list of the points in the domain.
.. topic:: Nota bene
The functions :py:meth:`~pyCore.daeDomain.__call__`, :py:meth:`~pyCore.daeDomain.__getitem__`
and :py:meth:`~pyCore.daeDomain.array` can only be used to build equations' residual expressions.
On the other hand, the attribute :py:attr:`~pyCore.daeDomain.Points` can be used at any point.
More information about domains can be found in the API reference :py:class:`~pyCore.daeDomain` and in :doc:`tutorials`.
Variables
---------
Variables define time varying quantities that change during a simulation
and can be:
* Algebraic
* Differential
* Assigned (that is their value is assigned by fixing the number of degrees of freedom - DOF)
They are defined in two phases:
* Declaring a variable in the model
* Initialising it, if required (by assigning its value or setting an initial condition) in the simulation
Declaring variables
~~~~~~~~~~~~~~~~~~~
Variables are declared in the :py:meth:`~pyCore.daeModel.__init__` function:
.. code-block:: python
# Ordinary variables:
self.myVar = daeVariable("myVar", variableType, parentModel, "description")
# Distributed variables:
self.myVar = daeVariable("myVar", variableType, parentModel, "description")
self.myVar.DistributeOnDomain(myDomain)
# or simply:
self.myVar = daeVariable("myVar", variableType, parentModel, "description", [myDomain])
Initialising variables
~~~~~~~~~~~~~~~~~~~~~~
Variables are initialised in the :py:meth:`~pyActivity.daeSimulation.SetUpVariables` function:
* The function :py:meth:`~pyCore.daeVariable.AssignValue` is used to specify degrees of freedom:
.. code-block:: python
myVar.AssignValue(value)
# If the variable is distributed:
for i in range(myDomain.NumberOfPoints):
myVar.AssignValue(i, value)
# In addition, all values can be specified in a single call using a numpy array:
myVar.AssignValues(values)
where the argument `value` can be either a floating point number or the :py:class:`~pyUnits.quantity` object
(i.e. 1.34 * W/(m*K)), and `values` is a numpy array of floats or :py:class:`~pyUnits.quantity` objects.
If the simple floats are used it is assumed that they represent values with the same units as in the
variable type definition.
The functions :py:meth:`~pyCore.daeVariable.ReAssignValue` and :py:meth:`~pyCore.daeVariable.ReAssignValues`
are used in a schedule during a simulation (in the function :py:meth:`~pyActivity.daeSimulation.Run`)
to re-assign the variable with the new value(s).
* The function :py:meth:`~pyCore.daeVariable.SetInitialCondition` is used to set initial conditions:
.. code-block:: python
myVar.SetInitialCondition(value)
# If the variable is distributed:
for i in range(myDomain.NumberOfPoints):
myVar.SetInitialCondition(i, value)
# In addition, all values can be specified in a single call using a numpy array:
myVar.SetInitialConditions(values)
The functions :py:meth:`~pyCore.daeVariable.ReSetInitialCondition` and :py:meth:`~pyCore.daeVariable.ReSetInitialConditions`
are used in a schedule during a simulation (in the function :py:meth:`~pyActivity.daeSimulation.Run`)
to re-initialise the variable with the new value(s).
* The function :py:meth:`~pyCore.daeVariable.SetAbsoluteTolerances` is used to set absolute tolerances:
.. code-block:: python
myVar.SetAbsoluteTolerances(1E-5)
* The function :py:meth:`~pyCore.daeVariable.SetInitialGuess` is used to set initial guesses:
.. code-block:: python
myVar.SetInitialGuess(value)
# If the variable is distributed:
for i in range(0, myDomain.NumberOfPoints):
myVar.SetInitialGuess(i, value)
# In addition, all values can be specified in a single call using a numpy array:
myVar.SetInitialGuesses(values)
Using variables
~~~~~~~~~~~~~~~
.. The most commonly used functions are:
* The function call operator :py:meth:`~pyCore.daeVariable.__call__` (``operator ()``)
which returns the :py:class:`~pyCore.adouble` object that holds the variable value
* The function :py:meth:`~pyCore.dt` which returns the :py:class:`~pyCore.adouble` object
that holds the value of a time derivative of the variable
* The functions :py:meth:`~pyCore.d` and :py:meth:`~pyCore.d2` which return
the :py:class:`~pyCore.adouble` object that holds the value of a partial derivative of the variable
per given domain (of the first and the second order, respectively)
* The functions :py:meth:`~pyCore.daeVariable.array`, :py:meth:`~pyCore.dt_array`,
:py:meth:`~pyCore.d_array` and :py:meth:`~pyCore.d2_array` which return the
:py:class:`~pyCore.adouble_array` object that holds an array of variable values, time derivatives,
partial derivative per given domain (of the first order and the second order, respectively)
* Distributed parameters have the :py:attr:`~pyCore.daeVariable.npyValues` property which
returns the variable values as a numpy multi-dimensional array (with ``numpy.float`` data type)
* The functions :py:meth:`~pyCore.daeVariable.SetValue` and :py:meth:`~pyCore.daeVariable.GetValue` /
:py:meth:`~pyCore.daeVariable.GetQuantity`
which get/set the variable value as ``float`` or the :py:class:`~pyUnits.quantity` object
* The functions :py:meth:`~pyCore.daeVariable.ReAssignValue`, :py:meth:`~pyCore.daeVariable.ReAssignValues`,
:py:meth:`~pyCore.daeVariable.ReSetInitialCondition` and :py:meth:`~pyCore.daeVariable.ReSetInitialConditions`
can be used to re-assign or re-initialise
variables **only during a simulation** (in the function :py:meth:`~pyActivity.daeSimulation.Run`)
Distributed parameters have the property :py:attr:`~pyCore.daeParameter.npyValues` that contains
the values as a numpy multi-dimensional array (with 'numpy.float' data type)
The functions :py:meth:`~pyCore.daeVariable.__call__` and :py:meth:`~pyCore.daeVariable.array` are used
to get a value or an array of values (for use in model equations only).
They accept the same type of arguments as explained in the section `Using parameters`_.
In addition, the following functions are used to get derivatives:
1. The function :py:meth:`~pyCore.dt` is used to get a time derivative of an ordinary variable.
For instance, the equation:
.. math::
{ d(myVar) \over {d}{t} } = 1
is given as:
.. code-block:: python
# Notation:
# - eq is a daeEquation object
# - myVar is an ordinary daeVariable
eq.Residual = dt(myVar()) - 1.0
The same function is used for distributed variables. For example, the equation:
.. math::
{d(myVar(i)) \over dt} = 1; \forall i \in [0, n]
is written as:
.. code-block:: python
# Notation:
# - myDomain is daeDomain object
# - n is the number of points in myDomain
# - eq is a daeEquation object distributed on myDomain
# - d1,d2 are objects used to iterate through the domain points
# - myVar is daeVariable object distributed on myDomain
d = eq.DistributeOnDomain(myDomain, eClosedClosed)
eq.Residual = dt(myVar(d)) - 1.0
For variables that are distributed on more than one domain, the equation:
.. math::
{d(myVar(d_1, d_2)) \over dt} = 1; \forall d_1 \in [0, n_1], \forall d_2 \in [0, n_2]
is specified as:
.. code-block:: python
# Notation:
# - myDomain1, myDomain2 are daeDomain objects
# - n1 is the number of points in myDomain1
# - n2 is the number of points in myDomain2
# - eq is a daeEquation object distributed on the domains myDomain1 and myDomain2
# - d is daeDEDI object (used to iterate through the domain points)
# - myVar is daeVariable object distributed on myDomain1 and myDomain2
d1 = eq.DistributeOnDomain(myDomain1, eClosedClosed)
d2 = eq.DistributeOnDomain(myDomain2, eClosedClosed)
eq.Residual = dt(myVar(d1,d2)) - 1.0
The code translates into a set of `n1 x n2` equations.
The function :py:meth:`~pyCore.dt_array` is used to get an array of time derivatives.
It accepts the same type of arguments as explained in the section `Using parameters`_.
2. The functions :py:meth:`~pyCore.d` and :py:meth:`~pyCore.d2` are used to get a partial derivative of distributed variables.
For instance, the equation:
.. math::
{\partial myVar(d) \over \partial myDomain} = 1.0; \forall d \in [0, n]
is written as:
.. code-block:: python
# Notation:
# - myDomain is daeDomain object
# - n is the number of points in myDomain
# - eq is a daeEquation object distributed on myDomain
# - d is daeDEDI object (used to iterate through the domain points)
# - myVar is daeVariable object distributed on myDomain
d = eq.DistributeOnDomain(myDomain, eClosedClosed)
eq.Residual = d(myVar(d), myDomain, discretizationMethod=eCFDM, options={}) - 1.0
# since the defaults are eCFDM and an empty options dictionary the above is equivalent to:
eq.Residual = d(myVar(d), myDomain) - 1.0
The default discretisation method is center finite difference method (`eCFDM``) and the default
discretisation order is 2 and can be specified in the `options` dictionary: `options["DiscretizationOrder"] = integer`.
At the moment, only the finite difference discretisation methods are supported by default
(but the finite volume and finite elements implementations are available using the third party libraries):
* Center finite difference method (`eCFDM`)
* Backward finite difference method (`eBFDM`)
* Forward finite difference method (`eFFDM`)
The functions :py:meth:`~pyCore.d_array` and :py:meth:`~pyCore.d2_array` are used to get an array of partial derivatives.
They accept the same type of arguments as explained in the section `Using parameters`_.
The property :py:attr:`~pyCore.daeVariable.npyValues` contains the variable values as a numpy multi-dimensional array
(with `numpy.float` data type).
The functions :py:meth:`~pyCore.daeVariable.SetValue` and :py:meth:`~pyCore.daeVariable.GetValue` /
:py:meth:`~pyCore.daeVariable.GetQuantity` are used to get/set the variable value as a floating point number or
the :py:class:`~pyUnits.quantity` object.
.. topic:: Nota bene
The functions :py:meth:`~pyCore.daeVariable.__call__`, :py:meth:`~pyCore.dt`,
:py:meth:`~pyCore.d`, :py:meth:`~pyCore.d2`, :py:meth:`~pyCore.daeVariable.array`,
:py:meth:`~pyCore.dt_array`, :py:meth:`~pyCore.d_array`
and :py:meth:`~pyCore.d2_array` can only be used to build equations' residual expressions.
On the other hand, the functions :py:class:`~pyCore.daeVariable.GetValue`,
:py:class:`~pyCore.daeVariable.SetValue` and :py:attr:`~pyCore.daeVariable.npyValues` can be used
to access the variable data at any point.
More information about variables can be found in the API reference :py:class:`~pyCore.daeVariable`
and in :doc:`tutorials`.
Ports
-----
Ports define connection points between model instances for exchange of continuous quantities.
Like models, they can contain domains, parameters and variables.
New type of ports are defined by deriving a class from the base :py:class:`~pyCore.daePort`:
.. code-block:: python
class myPort(daePort):
def __init__(self, name, parent = None, description = ""):
daePort.__init__(self, name, type, parent, description)
# Declaration/instantiation of domains, parameters and variables
...
The port structure (domains, parameters and variables) is declared in the
:py:meth:`~pyCore.daePort.__init__` function.
The same rules apply as described in the section `Developing models`_.
Two ports are connected using the :py:meth:`~pyCore.daeModel.ConnectPorts` function.
Ports are instantiated as `inlet` or `outlet` type in the :py:meth:`~pyCore.daeModel.__init__` function:
.. code-block:: python
self.myPort = daePort("myPort", eInletPort, parentModel, "description")
Event ports
-----------
Event ports define connection points between model instances for exchange of discrete messages/events.
Events can be triggered manually (using the :py:meth:`~pyCore.daeEventPort.SendEvent` function) or when
a specified condition is satisfied.
The main difference between event and ordinary ports is that the former allow a discrete communication
between models while the latter allow a continuous exchange of information.
Messages are floating point values that can be used by a recipient. Upon a reception of an event,
a set of actions are executed. The actions are specified in the :py:meth:`~pyCore.daeModel.ON_EVENT` function.
The events received by an event port can be recorded by setting the boolean
:py:attr:`~pyCore.daeEventPort.RecordEvents` property to `True` and retrieved using the
:py:attr:`~pyCore.daeEventPort.Events` property.
Two event ports are connected using the :py:meth:`~pyCore.daeModel.ConnectEventPorts` function.
A single outlet event port can be connected to unlimited number of inlet event ports.
Event ports are instantiated in the :py:meth:`~pyCore.daeModel.__init__` function:
.. code-block:: python
self.myEventPort = daeEventPort("myEventPort", eOutletPort, parentModel, "description")
Equations
---------
Model equations are specified in an implicit (acausal) form.
They can be continuous or discontinuous and distributed on one or more domains.
Equations can be distributed on a whole domain, on a portion of it or even on
a single point (i.e. equations for boundary conditions).
Declaring equations
~~~~~~~~~~~~~~~~~~~
Equations are declared in the :py:meth:`~pyCore.daeModel.DeclareEquations` function:
.. code-block:: python
# Ordinary equation:
eq = model.CreateEquation("MyEquation", "description")
# Distributed equation (on the whole domain, including the boundaries):
eq = model.CreateEquation("MyEquation")
d = eq.DistributeOnDomain(myDomain, eClosedClosed)
Currently, the following options for distributing equations are available:
- Distributed on a closed (whole) domain: :math:`x \in [x_0, x_n]`
- Distributed on a left open domain: :math:`x \in (x_0, x_n]`
- Distributed on a right open domain: :math:`x \in [x_0, x_n)`
- Distributed on a domain open on both sides: :math:`x \in (x_0, x_n)`
- Distributed on the lower bound: :math:`x \in \{ x_0 \}`
- Distributed on the upper bound: :math:`x \in \{ x_n \}`
- Distributed on a given set of points within a domain: i.e. :math:`x \in \{ x_0, x_3, x_7, x_8 \}`
where :math:`x_0` represents the lower bound and :math:`x_n` the upper bound of the domain.
An overview of available options is given in the table below.
The examples are given for an equation distributed on two domains: `x` and `y`.
Green squares represent portions of a domain included in the distributed equation,
while white squares represent excluded portions.
+-------------------------------------------------+---------------------------------------------------+
| | |EquationBounds_CC_CC| | | |EquationBounds_OO_OO| |
| | x = eClosedClosed; y = eClosedClosed | | x = eOpenOpen; y = eOpenOpen |
| | :math:`x \in [x_0, x_n], y \in [y_0, y_n]` | | :math:`x \in ( x_0, x_n ), y \in ( y_0, y_n )` |
+-------------------------------------------------+---------------------------------------------------+
| | |EquationBounds_CC_OO| | | |EquationBounds_CC_OC| |
| | x = eClosedClosed; y = eOpenOpen | | x = eClosedClosed; y = eOpenClosed |
| | :math:`x \in [x_0, x_n], y \in ( y_0, y_n )` | | :math:`x \in [x_0, x_n], y \in ( y_0, y_n ]` |
+-------------------------------------------------+---------------------------------------------------+
| | |EquationBounds_LB_CO| | | |EquationBounds_LB_CC| |
| | x = eLowerBound; y = eClosedOpen | | x = eLowerBound; y = eClosedClosed |
| | :math:`x = x_0, y \in [ y_0, y_n )` | | :math:`x = x_0, y \in [y_0, y_n]` |
+-------------------------------------------------+---------------------------------------------------+
| | |EquationBounds_UB_CC| | | |EquationBounds_LB_UB| |
| | x = eUpperBound; y = eClosedClosed | | x = eLowerBound; y = eUpperBound |
| | :math:`x = x_n, y \in [y_0, y_n]` | | :math:`x = x_0, y = y_n` |
+-------------------------------------------------+---------------------------------------------------+
.. |EquationBounds_CC_CC| image:: _static/EquationBounds_CC_CC.png
:width: 200pt
.. |EquationBounds_OO_OO| image:: _static/EquationBounds_OO_OO.png
:width: 200pt
.. |EquationBounds_CC_OO| image:: _static/EquationBounds_CC_OO.png
:width: 200pt
.. |EquationBounds_CC_OC| image:: _static/EquationBounds_CC_OC.png
:width: 200pt
.. |EquationBounds_LB_CO| image:: _static/EquationBounds_LB_CO.png
:width: 200pt
.. |EquationBounds_LB_CC| image:: _static/EquationBounds_LB_CC.png
:width: 200pt
.. |EquationBounds_UB_CC| image:: _static/EquationBounds_UB_CC.png
:width: 200pt
.. |EquationBounds_LB_UB| image:: _static/EquationBounds_LB_UB.png
:width: 200pt
Defining equations
~~~~~~~~~~~~~~~~~~
Equations in **DAE Tools** are specified in implicit (acausal) form as residual expressions.
For instance, a residual for an ordinary equation:
.. math::
{\partial V_{14} \over \partial t} + {V_1 \over V_{14} + 2.5} + sin(3.14 \cdot V_3) = 0
is specified as:
.. code-block:: python
# Notation:
# - V1, V3, V14 are ordinary variables
eq.Residual = dt(V14()) + V1() / (V14() + 2.5) + sin(3.14 * V3())
while a distributed equation:
.. math::
{\partial V_{14}(x,y)) \over \partial t} + {V_1 \over V_{14}(x,y) + 2.5} + sin(3.14 \cdot V_3(x,y)) = 0;
\forall x \in [0, nx], \forall y \in (0, ny)
is given as:
.. code-block:: python
# Notation:
# - V1 is an ordinary variable
# - V3 and V14 are variables distributed on domains x and y
eq = model.CreateEquation("MyEquation")
dx = eq.DistributeOnDomain(x, eClosedClosed)
dy = eq.DistributeOnDomain(y, eOpenOpen)
eq.Residual = dt(V14(dx,dy)) + V1() / ( V14(dx,dy) + 2.5) + sin(3.14 * V3(dx,dy) )
where `dx` and `dy` are :py:class:`~pyCore.daeDEDI` (which is short for `daeDistributedEquationDomainInfo`) objects.
These objects are used internally by the framework to iterate over the domain points when generating a set of equations
from a distributed equation.
Therefore, the equation above is equivalent to:
.. code-block:: python
# Notation:
# - V1 is an ordinary variable
# - V3 and V14 are variables distributed on domains x and y
for dx in range(0, x.NumberOfPoints): # x: [x0, xn]
for dy in range(1, y.NumberOfPoints-1): # y: (y0, yn)
eq = model.CreateEquation("MyEquation(%d,%d)" % (dx, dy) )
eq.Residual = dt(V14(dx,dy)) + V1() / ( V14(dx,dy) + 2.5) + sin(3.14 * V3(dx,dy) )
The latter form can be used for specifying equations that take different forms in different regions within domains.
:py:class:`~pyCore.daeDEDI` class provides the function :py:class:`~pyCore.daeDEDI.__call__` (`operator ()`)
that returns the current index as the :py:class:`~pyCore.adouble` object.
In addition, the operators `+` and `-` can be used to offset the current index by the specified integer.
For instance, the equation below:
.. math::
V_1(x) = V_2(x) + V_2(x+1); \forall x \in [0, nx)
is specified as:
.. code-block:: python
# Notation:
# - V1 and V2 are variables distributed on the x domain
eq = model.CreateEquation("MyEquation")
dx = eq.DistributeOnDomain(x, eClosedOpen)
eq.Residual = V1(dx) - ( V2(dx) + V2(dx+1) )
Units consistency for all equations is checked by default. This can be changed for individual equations using the
boolean property :py:attr:`~pyCore.daeEquation.CheckUnitsConsistency` or globally in the `daetools.cfg` config file.
Scaling of equations' residuals could be very important for the convergence of the numerical algorithm.
Large condition numbers produce ill-conditioned Jacobian matrices and a solution of a linear system of equations is
prone to large numerical errors. The equation scaling is 1.0 by default and can be changed using the
:py:attr:`~pyCore.daeEquation.Scaling` property.
Evaluation of derivatives of very large equations can be very costly since they contain a large number of variables.
For instance, taking an average value or a sum of all points in a large 2D or 3D domain can produce an equation residual with
tens of thousands of terms. Evaluation of all Jacobian items for such equations requires calculation of tens of thousands of
terms per every Jacobian item. However, only a single term has a non-zero value and a lot of time is wasted calculating terms
that always produce zero. Thus, building of Jacobian expressions ahead of time can significantly improve the numerical
performance (at the cost of larger memory requirements). Pre-building of Jacobian expressions can be performed
using the boolean property :py:attr:`~pyCore.daeEquation.BuildJacobianExpressions` (the default is `False`).
Supported mathematical operations and functions
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
**DAE Tools** support five basic mathematical operations (+, -, `*`, /, `**`) and the following
standard mathematical functions: :py:meth:`~pyCore.Sqrt`, :py:meth:`~pyCore.Pow`, :py:meth:`~pyCore.Log`,
:py:meth:`~pyCore.Log10`, :py:meth:`~pyCore.Exp`, :py:meth:`~pyCore.Min`, :py:meth:`~pyCore.Max`,
:py:meth:`~pyCore.Floor`, :py:meth:`~pyCore.Ceil`, :py:meth:`~pyCore.Abs`, :py:meth:`~pyCore.Sin`,
:py:meth:`~pyCore.Cos`, :py:meth:`~pyCore.Tan`, :py:meth:`~pyCore.ASin`, :py:meth:`~pyCore.ACos`,
:py:meth:`~pyCore.ATan`, :py:meth:`~pyCore.Sinh`, :py:meth:`~pyCore.Cosh`, :py:meth:`~pyCore.Tanh`,
:py:meth:`~pyCore.ASinh`, :py:meth:`~pyCore.ACosh`, :py:meth:`~pyCore.ATanh`, :py:meth:`~pyCore.ATan2` and
:py:meth:`~pyCore.Erf`. All the above-mentioned operators and functions operate on :py:class:`~pyCore.adouble` and
:py:class:`~pyCore.adouble_array` objects.
In addition, functions such as :py:meth:`~pyCore.Sum`,
:py:meth:`~pyCore.Product`, :py:meth:`~pyCore.Average`, :py:meth:`~pyCore.Min` and :py:meth:`~pyCore.Max`
operate only on :py:class:`~pyCore.adouble_array` objects.
Logical conditions are specified using the following comparison operators:
`<` (less than),
`<=` (less than or equal),
`==` (equal),
`!=` (not equal),
`>` (greater than),
`>=` (greater than or equal)
and the following logical operators:
`&` (logical AND),
`|` (logical OR),
`~` (logical NOT)
can be used.
.. topic:: Nota bene
It is not allowed to overload Python's built-in operators **and**, **or** and **not**.
Therefore, the operators **&**, **|** and **~** are defined and should be used instead.
Interoperability with NumPy
~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. The basic mathematical operations and functions are re-defined to operate on the :py:class:`~pyCore.adouble`
class and with NumPy library in mind. Therefore it is equivalent to use NumPy functions on
:py:class:`~pyCore.adouble` arguments. For instance, to define the equation below:
.. math::
V_1 = exp(V_2)
the following can be used:
.. code-block:: python
# Notation:
# - V1 and V2 are ordinary variables
eq.Residual = V1() - Exp(V2())
# or:
eq.Residual = V1() - numpy.exp(V2())
since the numpy function ``exp`` is redefined for :py:class:`~pyCore.adouble` arguments
and calls the **DAE Tools** :py:meth:`~pyCore.Exp` function. The same stands for all other mathematical functions.
The :py:class:`~pyCore.adouble` and :py:class:`~pyCore.adouble_array` classes are designed with
the support for :py:class:`numpy` library in mind.
They implement most of the standard mathematical functions available in :py:mod:`numpy`
such as :py:meth:`numpy.sqrt`, :py:meth:`numpy.pow`, :py:meth:`numpy.log`,
:py:meth:`numpy.log10`, :py:meth:`numpy.exp`, :py:meth:`numpy.min`, :py:meth:`numpy.max`,
:py:meth:`numpy.floor`, :py:meth:`numpy.ceil`, :py:meth:`numpy.abs`, :py:meth:`numpy.sin`,
:py:meth:`numpy.cos`, :py:meth:`numpy.tan`, :py:meth:`numpy.asin`, :py:meth:`numpy.acos`,
:py:meth:`numpy.atan`, :py:meth:`numpy.sinh`, :py:meth:`numpy.cosh`, :py:meth:`numpy.tanh`,
:py:meth:`numpy.asinh`, :py:meth:`numpy.acosh`, :py:meth:`numpy.atanh`, :py:meth:`numpy.atan2`
and :py:meth:`numpy.erf`).
This way, :py:class:`~pyCore.adouble` and :py:class:`~pyCore.adouble_array` objects can be used
as native data types for :py:class:`numpy` functions.
Moreover, :py:class:`numpy` and **DAE Tools** mathematical functions are interchangeable.
In the example given below, :py:meth:`~pyCore.Exp` and :py:meth:`numpy.exp` functions produce identical results:
.. code-block:: python
# Notation:
# - Var is an ordinary variable
# - result is an ordinary variable
eq = self.CreateEquation("...")
eq.Residual = result() - numpy.exp( Var() )
# The above is identical to:
eq.Residual = result() - Exp( Var() )
Often, it is desired to apply :py:class:`numpy`/:py:class:`scipy` numerical functions on arrays of :py:class:`~pyCore.adouble` objects.
In those cases the functions such as :py:meth:`~daeVariable.pyCore.array`, :py:meth:`~pyCore.d_array`,
:py:meth:`~pyCore.dt_array`, :py:meth:`~pyCore.Array` etc.
are NOT applicable since they return :py:class:`~pyCore.adouble_array` objects.
However, :py:class:`numpy` arrays can be created and populated with :py:class:`~pyCore.adouble` objects and :py:class:`numpy` functions
applied on them. In addition, an :py:class:`~pyCore.adouble_array` object can be created from resulting :py:class:`numpy` arrays
of :py:class:`~pyCore.adouble` objects, if necessary.
For instance, to define the equation below:
.. math::
sum = \sum\limits_{i=0}^{N_x-1} \left( V_1(i) + 2 \cdot V_2(i)^2 \right)
the following code can be used:
.. code-block:: python
# Notation:
# - x is a continuous domain
# - V1 is a variable distributed on the x domain
# - V2 is a variable distributed on the x domain
# - sum is an ordinary variable
# - ndarr_V1 is one dimensional numpy array with dtype=object
# - ndarr_V2 is one dimensional numpy array with dtype=object
# - adarr_V1 is adouble_array object
# - Nx is the number of points in the domain x
# 1. Create empty numpy arrays as a container for daetools adouble objects
ndarr_V1 = numpy.empty(Nx, dtype=object)
ndarr_V2 = numpy.empty(Nx, dtype=object)
# 2. Fill the created numpy arrays with adouble objects
ndarr_V1[:] = [V1(x) for x in range(Nx)]
ndarr_V2[:] = [V2(x) for x in range(Nx)]
# Now, ndarr_V1 and ndarr_V2 represent arrays of Nx adouble objects each:
# ndarr_V1 := [V1(0), V1(1), V1(2), ..., V1(Nx-1)]
# ndarr_V2 := [V2(0), V2(1), V2(2), ..., V2(Nx-1)]
# 3. Create an equation using the common numpy/scipy functions/operators
eq = self.CreateEquation("sum")
eq.Residual = sum() - numpy.sum(ndarr_V1 + 2*ndarr_V2**2)
# If adouble_array is needed after operations on a numpy array, the following two functions can be used:
# a) static function adouble_array.FromList(python_list)
# b) static function adouble_array.FromNumpyArray(numpy_array)
# Both return an adouble_array object.
adarr_V1 = adouble_array.FromNumpyArray(ndarr_V1)
print(adarr_V1)
Details on autodifferentiation support
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
To calculate a residual and its gradients
the `operator overloading `_
technique for `automatic differentiation `_
is applied (`ADOL-C `_).
Model equations are stored in a tree-like data structure called **Evaluation Tree**.
Evaluation Trees consist of nodes representing mathematical operators and functions and their operands.
In **DAE Tools** the basic mathematical operators and functions are re-defined to operate on **a modified ADOL-C**
class :py:class:`~pyCore.adouble` extended with the simulator-specific information.
In addition, all operators/functions accept the :py:class:`~pyCore.adouble_array` objects to support operations on arrays.
Once built, Evaluation Trees can be used to calculate equation residuals or derivatives, check units consistency and
export equations into the Latex or MathML format.
For instance, the equation:
.. math::
\frac{x[0]-x[1]} {x[2]-x[3]} + 1.2 \cdot sin(x[0]) = 0
is specified in **DAE Tools** as:
.. code-block:: python
eq = model.CreateEquation("myEquation")
eq.Residual = (x(0)-x(1))/(x(2)-x(3)) + 1.2 * sin(x(0))
and represented as the evaluation tree in :numref:`Figure-EvaluationTree`.
.. _Figure-EvaluationTree:
.. figure:: _static/evaluation_tree.png
:width: 400 pt
:figwidth: 420 pt
:align: center
Evaluation Tree
As it has been described in the previous sections, domains, parameters, and variables contain functions
that return :py:class:`~pyCore.adouble`/:py:class:`~pyCore.adouble_array` objects used to construct the
evaluation trees. These functions include functions to get a value of
a parameter/variable (:py:meth:`~pyCore.daeVariable.__call__`), a time or a partial derivative of a variable
(functions :py:meth:`~pyCore.dt`, :py:meth:`~pyCore.d`, or :py:meth:`~pyCore.d2`)
or functions to obtain an array of values, time or partial derivatives (:py:meth:`~pyCore.daeVariable.array`,
:py:meth:`~pyCore.dt_array`, :py:meth:`~pyCore.d_array`, and :py:meth:`~pyCore.d2_array`).
Defining boundary conditions
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
**DAE tools** in general support all types of boundary conditions such as the Dirichlet, Neumann and Robin.
As an example, a simple heat transfer model is considered:
heat conduction through a very thin rectangular plate.
At one side (at y = 0) the Dirichlet boundary conditions are prescribed (the constant temperature: 500 K)
while at the opposite end the Neumann boundary conditions (the constant flux: :math:`10^6 {W}/{m^2}`).
The model is described by a single distributed equation:
.. math::
\rho c_p {{dT(x,y)} \over {dt}} - k \left( {\partial^2 T(x,y) \over \partial x^2} + {\partial^2 T(x,y) \over \partial y^2} \right) = 0;
\forall x \in [0, nx], \forall y \in (0, ny)
specified as:
.. code-block:: python
# Notation:
# - T is a variable distributed on x and y domains
# - rho, k, and cp are parameters
eq = model.CreateEquation("MyEquation")
dx = eq.DistributeOnDomain(x, eClosedClosed)
dy = eq.DistributeOnDomain(y, eOpenOpen)
eq.Residual = rho() * cp() * dt(T(dx,dy)) - k() * ( d2(T(dx,dy), x) + d2(T(dx,dy), y) )
The equation is distributed on the `y` domain open on both ends; thus, the additional equations
(boundary conditions at `y = 0` and `y = ny-1` points) need to be specified to make the system well posed:
.. math::
T(x,y) &= 500; \forall x \in [0, nx], y = 0 \\
-k {\partial T(x,y) \over \partial y} &= 10^6; \forall x \in [0, nx], y = ny
which is in **DAE Tools** given as:
.. code-block:: python
# The Dirichlet boundary conditions at the "bottom edge" :
bceq = model.CreateEquation("Bottom_BC")
dx = bceq.DistributeOnDomain(x, eClosedClosed)
dy = bceq.DistributeOnDomain(y, eLowerBound)
bceq.Residual = T(dx,dy) - Constant(500 * K) # Constant temperature (500 K)
# The Neumann boundary conditions at the "top edge":
bceq = model.CreateEquation("Top_BC")
dx = bceq.DistributeOnDomain(x, eClosedClosed)
dy = bceq.DistributeOnDomain(y, eUpperBound)
bceq.Residual = - k() * d(T(dx,dy), y) - Constant(1E6 * W/m**2) # Constant flux (1E6 W/m2)
Making equations more readable
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Equations residuals can be made more readable by defining some auxiliary functions
(as illustrated in :ref:`tutorial2`):
.. code-block:: python
def DeclareEquations(self):
daeModel.DeclareEquations(self)
# Auxiliary functions and objects
rho = self.rho()
Q = lambda i: self.Q(i)
cp = lambda x,y: self.cp(x,y)
k = lambda x,y: self.k(x,y)
T = lambda x,y: self.T(x,y)
dT_dt = lambda x,y: dt(self.T(x,y))
dT_dx = lambda x,y: d(self.T(x,y), self.x, eCFDM)
dT_dy = lambda x,y: d(self.T(x,y), self.y, eCFDM)
d2T_dx2 = lambda x,y: d2(self.T(x,y), self.x, eCFDM)
d2T_dy2 = lambda x,y: d2(self.T(x,y), self.y, eCFDM)
eq = self.CreateEquation("HeatBalance", "Heat balance equation valid on the open x and y domains")
x = eq.DistributeOnDomain(self.x, eOpenOpen)
y = eq.DistributeOnDomain(self.y, eOpenOpen)
eq.Residual = rho * cp(x,y) * dT_dt(x,y) - k(x,y) * (d2T_dx2(x,y) + d2T_dy2(x,y))
eq = self.CreateEquation("BC_bottom", "Neumann boundary conditions at the bottom edge (constant flux)")
x = eq.DistributeOnDomain(self.x, eOpenOpen)
y = eq.DistributeOnDomain(self.y, eLowerBound)
eq.Residual = -k(x,y) * dT_dy(x,y) - Q(0)
eq = self.CreateEquation("BC_top", "Neumann boundary conditions at the top edge (constant flux)")
x = eq.DistributeOnDomain(self.x, eOpenOpen)
y = eq.DistributeOnDomain(self.y, eUpperBound)
eq.Residual = -k(x,y) * dT_dy(x,y) - Q(1)
eq = self.CreateEquation("BC_left", "Neumann boundary conditions at the left edge (insulated)")
x = eq.DistributeOnDomain(self.x, eLowerBound)
y = eq.DistributeOnDomain(self.y, eClosedClosed)
eq.Residual = dT_dx(x,y)
eq = self.CreateEquation("BC_right", " Neumann boundary conditions at the right edge (insulated)")
x = eq.DistributeOnDomain(self.x, eUpperBound)
y = eq.DistributeOnDomain(self.y, eClosedClosed)
eq.Residual = dT_dx(x,y)
Obviously, the heat conduction equation from :ref:`tutorial2`:
.. code-block:: python
...
eq.Residual = rho * cp(x,y) * dT_dt(x,y) - k(x,y) * (d2T_dx2(x,y) + d2T_dy2(x,y))
is much more readable than the same equation from :ref:`tutorial1`:
.. code-block:: python
...
eq.Residual = self.rho() * self.cp() * dt(self.T(x,y)) - \
self.k() * (d2(self.T(x,y), self.x, eCFDM) + d2(self.T(x,y), self.y, eCFDM))
State Transition Networks
-------------------------
Discontinuous equations are equations that take different forms subject to certain conditions.
In **DAE Tools** they are modelled using the concept of State Transition Networks (STN).
State Transition Networks can be:
1) **Reversible** (internally described by :py:class:`~pyCore.daeIF` class)
2) **Irreversible** (internally described by :py:class:`~pyCore.daeSTN` class)
Every STN consists of two or more states (:py:class:`~pyCore.daeState` class).
Each state is described by a set of equations and conditions for transitions between states.
**Irreversible** STNs can optionally contain a set of actions to be performed when a specified logical
condition is satisfied.
At any given moment, there is one active state.
For example, a flow of fluid through a pipe is described by three different regimes:
* *Laminar*: if Reynolds number is less than 2,100
* *Transient*: if Reynolds number is greater than 2,100 and less than 10,000
* *Turbulent*: if Reynolds number is greater than 10,000
From any of these three states the system can go to any other state.
This type of discontinuities is called a **reversible discontinuity** and constructed using the
:py:meth:`~pyCore.daeModel.IF`, :py:meth:`~pyCore.daeModel.ELSE_IF`, :py:meth:`~pyCore.daeModel.ELSE`
and :py:meth:`~pyCore.daeModel.END_IF` functions:
.. code-block:: python
IF(Re() <= 2100) # Laminar flow
#... (equations go here)
ELSE_IF(Re() > 2100 & Re() < 10000) # Transient flow
#... (equations go here)
ELSE() # Turbulent flow
#... (equations go here)
END_IF()
The comparison operators operate on :py:class:`~pyCore.adouble` objects and floating point values.
Units consistency is strictly checked and expressions including plain numbers values
are allowed only if a variable or parameter is dimensionless.
The following expressions are valid:
.. code-block:: python
# Notation:
# - T is a variable with units: K
# - m is a variable with units: kg
# - p is a dimensionless parameter
# T < 0.5 K
T() < Constant(0.5 * K)
# (T >= 300 K) or (m < 1 kg)
(T() >= Constant(300 * K)) | (m < Constant(0.5 * kg))
# p <= 25.3 (use of the Constant function not necessary)
p() <= 25.3
**Reversible discontinuities** can be **symmetrical** and **non-symmetrical**. The above example is **symmetrical**.
**Non-symmetrical** STNs are used to describe the concept of hysteresis.
Discontinuities can also be **irreversible**.
For instance, a CPU and its power dissipation can operate in three operating modes:
* **Normal** mode
* switch to **Power saving** mode if CPU load is below 5%
* switch to **Fried** mode if the temperature is above 110 degrees
* **Power saving** mode
* switch to **Normal** mode if CPU load is above 5%
* switch to **Fried** mode if the temperature is above 110 degrees
* **Fried** mode
* Damn, no escape from here... go to the nearest shop and buy a new one!
Or, donate some money to DAE Tools project :-)
From the **Normal** mode the system can either go to the **Power saving** mode or to the **Fried** mode.
The same stands for the **Power saving** mode: the system can either go to the **Normal** mode or to the **Fried** mode.
However, once the temperature exceeds 110 degrees the CPU dies (let's say it is heavily overclocked) and the system
remains in this state permanently.
This type of discontinuities is called an **irreversible discontinuity** and can be described
using :py:meth:`~pyCore.daeModel.STN`, :py:meth:`~pyCore.daeModel.STATE`, :py:meth:`~pyCore.daeModel.END_STN` functions:
.. code-block:: python
STN("CPU")
STATE("Normal")
#... (equations go here)
ON_CONDITION( CPULoad() < 0.05, switchToStates = [ ("CPU", "PowerSaving") ] )
ON_CONDITION( T() > Constant(110*K), switchToStates = [ ("CPU", "Fried") ] )
STATE("PowerSaving")
#... (equations go here)
ON_CONDITION( CPULoad() >= 0.05, switchToStates = [ ("CPU", "Normal") ] )
ON_CONDITION( T() > Constant(110*K), switchToStates = [ ("CPU", "Fried") ] )
STATE("Fried")
#... (equations go here)
END_STN()
The function :py:meth:`~pyCore.daeModel.ON_CONDITION` is used to define actions to be performed
when the specified condition is satisfied. In addition, the function :py:meth:`~pyCore.daeModel.ON_EVENT`
can be used to define actions to be performed when an event is triggered on a specified event port.
Details on how to use :py:meth:`~pyCore.daeModel.ON_CONDITION` and :py:meth:`~pyCore.daeModel.ON_EVENT`
functions can be found in the `OnCondition actions`_ and `OnEvent actions`_ sections, respectively.
More information about state transition networks can be found in :py:class:`~pyCore.daeSTN`,
:py:class:`~pyCore.daeIF` and in :doc:`tutorials`.
OnCondition actions
-------------------
The function :py:meth:`~pyCore.daeModel.ON_CONDITION` is used to define actions to be performed
when a specified condition is satisfied. The available actions include:
* Changing the active state in specified State Transition Networks (argument `switchToStates`)
* Re-assigning or re-initialising specified variables (argument `setVariableValues`)
* Triggering an event on the specified event ports (argument `triggerEvents`)
* Executing user-defined actions (argument `userDefinedActions`)
.. topic:: Nota bene
OnCondition actions can be added to models or to states in State Transition Networks
(:py:class:`~pyCore.daeSTN` or :py:class:`~pyCore.daeIF`):
- When added to a model they remain active throughout the simulation
- When added to a state they become active only when the parent state becomes active
.. topic:: Nota bene
`switchToStates`, `setVariableValues`, `triggerEvents` and `userDefinedActions`
are empty by default. The user has to specify at least one action.
For instance, to execute some actions when the temperature becomes greater than 340 K the following can be used:
.. code-block:: python
def DeclareEquations(self):
...
self.ON_CONDITION( T() > Constant(340*K), switchToStates = [ ('STN', 'StateName'), ... ],
setVariableValues = [ (variable, newValue), ... ],
triggerEvents = [ (eventPort, eventMessage), ... ],
userDefinedActions = [ userDefinedAction, ... ] )
where the first argument of the :py:meth:`~pyCore.daeModel.ON_CONDITION` function is a condition
specifying when the actions will be executed and:
* `switchToStates` is a list of tuples (string '*STN Name*', string '*State name to activate*')
* `setVariableValues` is a list of tuples (:py:class:`~pyCore.daeVariable` object, :py:class:`~pyCore.adouble` object)
* `triggerEvents` is a list of tuples (:py:class:`~pyCore.daeEventPort` object, :py:class:`~pyCore.adouble` object)
* `userDefinedActions` is a list of user defined objects derived from the base :py:class:`~pyCore.daeAction` class
More details on how to use :py:meth:`~pyCore.daeModel.ON_CONDITION` function can be found in :ref:`tutorial13`.
OnEvent actions
---------------
The function :py:meth:`~pyCore.daeModel.ON_EVENT` is used to define actions to be performed
when an event is triggered on the specified event port. The same type of actions are available as
in the :py:meth:`~pyCore.daeModel.ON_CONDITION` function.
.. topic:: Nota bene
OnEvent actions can be added to models or to states in State Transition Networks
(:py:class:`~pyCore.daeSTN` or :py:class:`~pyCore.daeIF`):
- When added to a model they remain active throughout the simulation
- When added to a state they become active only when the parent state becomes active
.. topic:: Nota bene
`switchToStates`, `setVariableValues`, `triggerEvents` and `userDefinedActions`
are empty by default. The user has to specify at least one action.
For instance, to execute some actions when an event is triggered on an event port the following can be used:
.. code-block:: python
def DeclareEquations(self):
...
self.ON_EVENT( eventPort, switchToStates = [ ('STN', 'StateName'), ... ],
setVariableValues = [ (variable, newValue), ... ],
triggerEvents = [ (eventPort, eventMessage), ... ],
userDefinedActions = [ userDefinedAction, ... ] )
where the first argument of the :py:meth:`~pyCore.daeModel.ON_EVENT` function is the
:py:class:`~pyCore.daeEventPort` object to be monitored for events, while the rest of the arguments
is the same as in the :py:meth:`~pyCore.daeModel.ON_CONDITION` function.
More details on how to use :py:meth:`~pyCore.daeModel.ON_EVENT` function can be found in :ref:`tutorial13`.
User-defined actions
--------------------
User-defined actions are executed in a response to a specified condition in `OnCondition` handlers
or in a response to an event triggered in `OnEvent` handlers.
They are created by deriving a class from the :py:class:`~pyCore.daeAction` base
and implementing the :py:meth:`~pyCore.daeScalarExternalFunction.Execute` function.
The :py:meth:`~pyCore.daeScalarExternalFunction.Execute` function takes no arguments. If some
information from the model is required they should be specified in the constructor.
User-defined actions do not return a value and should not change the values of variables
(other types of actions must be used for that purpose), but perform some user-defined operations.
The source code for a simple action that prints a message with the data sent to a specified event port is given below:
.. code-block:: python
# User-defined action executed when an event is triggered on a specified event port.
class simpleUserAction(daeAction):
def __init__(self, eventPort):
daeAction.__init__(self)
# Store the daeEventPort object for later use.
self.eventPort = eventPort
def Execute(self):
# The floating point value of the data sent when the event is triggered
# can be retrieved using the daeEventPort.EventData property.
msg = 'simpleUserAction executed; input data = %f' % self.eventPort.EventData
print('********************************************************')
print(msg)
print('********************************************************')
.. topic:: Notate bene
User-defined action objects **should** be instantiated in the :py:meth:`~pyCore.daeModel.DeclareEquations`
function if they access parameters' and variables' symbolic representations (available only there).
User-defined action objects **must** be stored in the model, otherwise they will get destroyed when
they go out of scope.
.. code-block:: python
def DeclareEquations(self):
...
# User-defined action objects should be stored in the model, otherwise
# they will get destroyed when they go out of scope.
self.action = simpleUserAction(self.eventPort)
# The actions executed when the event on the inlet 'eventPort' event port is received.
# daeEventPort defines the operator() which returns adouble object that can be used
# at the moment when the action is executed to get the value of the event data.
self.ON_EVENT(self.eventPort, userDefinedActions = [self.action])
More details on how to use user-defined actions can be found in :ref:`tutorial13`.
External functions
------------------
The concept of external functions in **DAE Tools** is used to handle and evaluate user-defined functions or
functions from external libraries. External functions can return scalar
(:py:class:`~pyCore.daeScalarExternalFunction`) or vector (:py:class:`~pyCore.daeVectorExternalFunction`) values.
.. topic:: Nota bene
The vector external functions are not implemented at the moment.
External functions are created by deriving a class from the :py:class:`~pyCore.daeScalarExternalFunction` base,
specifying its arguments in the constructor and implementing the :py:meth:`~pyCore.daeScalarExternalFunction.Calculate` function.
The source code for a simple :math:`F(x) = x ^ 2` external function is given below:
.. code-block:: python
class F(daeScalarExternalFunction):
def __init__(self, Name, parentModel, units, x):
# Instantiate the scalar external function by specifying
# the dictionary with arguments {'name' : adouble-object}
arguments = {}
arguments["x"] = x
daeScalarExternalFunction.__init__(self, Name, parentModel, units, arguments)
def Calculate(self, values):
# Calculate function is used to calculate a value and a derivative of the external
# function per given argument (if requested). Here, a simple function is given by:
# F(x) = x**2
# Procedure:
# 1. Get the arguments from the dictionary 'values': {'arg-name' : adouble-object}.
# Every adouble object has two properties: Value and Derivative that can be
# used to evaluate function or its partial derivatives per arguments
# (partial derivatives are used to fill in a Jacobian matrix necessary to solve
# a system of non-linear equations using the Newton method).
x = values["x"]
# 2. Always calculate the value of a function (the derivative is zero by default).
res = adouble(x.Value ** 2)
# 3. If a function derivative per one of its arguments is requested,
# the derivative part of that argument will be non-zero.
# In that case, investigate which derivative is requested and calculate it
# using the chain rule: f'(x) = x' * df(x)/dx
if x.Derivative != 0:
# A derivative per 'x' was requested; its value is: x' * 2x
res.Derivative = x.Derivative * (2 * x.Value)
# 4. Return the result as a adouble object (contains both a value and a derivative)
return res
.. topic:: Notate bene
External function objects **must** be instantiated in the :py:meth:`~pyCore.daeModel.DeclareEquations`
function since they access parameters' and variables' symbolic representations (available only there).
External function objects **must** be stored in the model, otherwise they will get destroyed when
they go out of scope.
.. code-block:: python
def DeclareEquations(self):
...
# Create external function (it has to be created in DeclareEquations!),
# specify its units (here for simplicity dimensionless) and
# arguments (here only a single argument: x)
# External function objects should be stored in the model, otherwise
# they will get destroyed when they go out of scope.
self.F = F("F", self, unit(), self.x())
# External function can now be used in daetools equations.
# Its value can be obtained using the operator() (python special function __call__)
eq = self.CreateEquation("...", "...")
eq.Residual = ... self.F() ...
A more complex example is given in the :ref:`tutorial14`. There, the external function concept is used to interpolate
a set of values using the :py:class:`scipy.interpolate.interp1d` object.
.. code-block:: python
class extfn_interp1d(daeScalarExternalFunction):
def __init__(self, Name, parentModel, units, times, values, Time):
arguments = {}
arguments["t"] = Time
# Instantiate interp1d object and initialise interpolation using supplied (time,y) values.
self.interp = scipy.interpolate.interp1d(times, values)
# During the solver iterations, the function is called very often with the same arguments.
# Therefore, cache the last interpolated value to speed up a simulation.
self.cache = None
daeScalarExternalFunction.__init__(self, Name, parentModel, units, arguments)
def Calculate(self, values):
# Get the argument from the dictionary of arguments' values.
time = values["t"].Value
# Here we do not need to return a derivative for it is not a function of variables.
# First check if an interpolated value was already calculated during the previous call.
# If it was, return the cached value (the derivative part is always equal to zero in this case).
if self.cache:
if self.cache[0] == time:
return adouble(self.cache[1])
# The time received is not in the cache and has to be interpolated.
# Convert the result to float datatype since daetools can't accept
# numpy.float64 types as arguments at the moment.
interp_value = float(self.interp(time))
res = adouble(interp_value, 0)
# Save it in the cache for later use.
self.cache = (time, res.Value)
return res
The `extfn_interp1d` class is used here to approximate some function *f*:
.. math::
y = f(t) = 2t
using its `t` ad `y` values:
.. code-block:: python
def DeclareEquations(self):
...
# Create scipy.interp1d interpolation external function.
# Create 'times' and 'values' arrays to be used for interpolation:
times = numpy.arange(0.0, 1000.0)
values = 2*times
# The external function accepts only a single argument: the current time in the simulation
# that can be obtained using the Time() daetools function.
# The external function units are seconds.
self.interp1d = extfn_interp1d("interp1d", self, s, times, values, Time())
Alternatively, DAE Tools can utilise functions defined in shared libraries via :py:class:`~pyCore.daeCTypesExternalFunction` class.
As an argument it accepts a function pointer from libraries loaded using Python `ctypes`.
Sample usage can be found in the :ref:`tutorial14`:
.. code-block:: python
def DeclareEquations(self):
...
# Load the library:
self.ext_lib = ctypes.CDLL("libheat_function.so")
# Function arguments:
arguments = {}
arguments['m'] = self.m()
arguments['cp'] = self.cp()
arguments['dT/dt'] = dt(self.T())
# Function pointer ('calculate' function is used):
function_ptr = self.ext_lib.calculate
self.exfnHeat2 = daeCTypesExternalFunction("heat_function", self, W, function_ptr, arguments)
The `calculate` function is defined in the `heat_function` c shared library:
.. code-block:: c
#include
typedef struct
{
double Value;
double Derivative;
}
adouble_c;
#if defined(_WIN32) || defined(WIN32) || defined(WIN64) || defined(_WIN64)
#define DLLEXPORT extern "C" __declspec(dllexport)
#else
#define DLLEXPORT
#endif
DLLEXPORT adouble_c calculate(const adouble_c values[], const char* names[], int no_arguments);
adouble_c calculate(const adouble_c values[], const char* names[], int no_arguments)
{
adouble_c result;
memset(&result, 0, sizeof(adouble_c));
/* Get the arguments' values. */
adouble_c m, cp, dT_dt;
for(int i = 0; i < no_arguments; i++)
{
if(strcmp(names[i], "m") == 0)
m = values[i];
else if(strcmp(names[i], "cp") == 0)
cp = values[i];
else if(strcmp(names[i], "dT/dt") == 0)
dT_dt = values[i];
}
/* Calculate the value. */
result.Value = m.Value * cp.Value * dT_dt.Value;
/* Calculate the derivative. */
if(m.Derivative != 0) /* A derivative per 'm' was requested */
result.Derivative = m.Derivative * (cp.Value * dT_dt.Value);
else if(cp.Derivative != 0) /* A derivative per 'cp' was requested */
result.Derivative = cp.Derivative * (m.Value * dT_dt.Value);
else if(dT_dt.Derivative != 0) /* A derivative per 'dT_dt' was requested */
result.Derivative = dT_dt.Derivative * (m.Value * cp.Value);
return result;
}
The library can be compiled using the following commands:
.. code-block:: bash
# GNU/Linux gcc:
gcc -fPIC -shared -o libheat_function.so tutorial4_heat_function.c
# macOS gcc:
gcc -fPIC -dynamiclib -o libheat_function.dylib tutorial14_heat_function.c
# Windows vc++:
cl /LD tutorial14_heat_function.c /link /dll /out:heat_function.dll
Numerical Methods for Partial Differential Equations
====================================================
The Finite Difference Method
----------------------------
DAE Tools support numerical simulation of partial differential equations on
structured grids using the Finite Difference Method.
Three different methods are provided:
- Backward Finite Difference method (eBFDM)
- Forward Finite Difference method (eFFDM)
- Center Finite Difference method (eCFDM)
The partial derivatives of the first and second order can be specified using the functions
:py:meth:`~pyCore.d` and :py:meth:`~pyCore.d2`.
As an illustration, the 1D convection-diffusion-reaction equation:
.. math::
{\partial c \over \partial t} + u {\partial c \over \partial x} - D {\partial^2 c \over \partial x^2} &= s(x), \forall x \in \left( 0,L \right] \\
c(0) &= 0.0
can be specified using the Center Finite Difference Method:
.. code-block:: python
class modTutorial(daeModel):
...
def DeclareEquations(self):
daeModel.DeclareEquations(self)
# Notation:
# - c is a state variable
# - x is a domain object
# - u is velocity
# Declare some auxiliary functions to make equations more readable
c = lambda i: self.c(i)
dc_dt = lambda x: dt(c(x))
dc_dx = lambda x: d (c(x), self.x, eCFDM)
d2c_dx2 = lambda x: d2(c(x), self.x, eCFDM)
s = lambda i: c(i)**2
# Declare the Convection-Diffusion-Reaction equation distributed on (0, L]:
eq = self.CreateEquation("c")
eq.DistributeOnDomain(self.x, eOpenClosed)
eq.Residual = dc_dt(x) + u * dc_dx(x) - D * d2c_dx2(x) - s(x)
# Boundary conditions at x = 0:
eq = self.CreateEquation("c(0)")
eq.Residual = c(0) - 0.0
The Finite Volume Method
------------------------
DAE Tools support numerical simulation of partial differential equations on
1D structured grids using the Finite Volume Method (high-resolution upwind scheme with flux limiter).
Consider the 1D convection-diffusion-reaction equation:
.. math::
{\partial c \over \partial t} + u {\partial c \over \partial x} - D {\partial^2 c \over \partial x^2} = s(x)
A cell-centered finite-volume discretisation yields the semi-discrete equation [#Koren]_ [#Koren2]_:
.. math::
\int_{\Omega_i} {\partial c_i \over \partial t} dx + u \left[ c_{i + {1 \over 2}} - c_{i - {1 \over 2}} \right] - D \left[ \left( \partial c \over \partial x \right)_{i + {1 \over 2}} - \left( \partial c \over \partial x \right)_{i - {1 \over 2}} \right] = \int_{\Omega_i} s_i dx
where the half-integer indices refer to cell faces :math:`\delta\Omega_{i-{1 \over 2}}` and :math:`\delta\Omega_{i+{1 \over 2}}`
between cell centers :math:`\Omega_{i-1}` and :math:`\Omega_i` as presented in the figure below:
.. figure:: _static/cell-centerred_finite-volume-discretisation-domain-x.png
:width: 200 pt
:align: center
The accuracy of the above finite volume discretisation is determined by the way in which the cell-face fluxes are computed.
Applying the high-resolution upwind scheme with flux limiter [#Koren]_ [#Koren2]_ for the cell-face state :math:`c_{i+{1 \over 2}}` results
in the following equation:
.. math::
{c}_{i + {1 \over 2}} = c_i + \phi \left( r_{i + {1 \over 2}} \right) \left( c_i - c_{i-1} \right)
where :math:`\phi` is the flux limiter function and :math:`r_{i + {1 \over 2}}` the upwind ratio of consecutive solution gradients:
.. math::
r_{i + {1 \over 2}} = {{c_{i+1} - c_{i} + \epsilon} \over {c_{i} - c_{i-1} + \epsilon}}
There is a large number of flux limiters [#FluxLimiters]_ implemented in **DAE Tools**:
- CHARM [not 2nd order TVD] (Zhou, 1995):
:math:`\phi(r)= \begin{cases} \frac{r\left(3r+1\right)}{\left(r+1\right)^{2}} & r>0, \lim_{r \rightarrow \infty} \phi(r)=3 \\ 0 & otherwise \end{cases}`
- HCUS (not 2nd order TVD) (Waterson and Deconinck, 1995):
:math:`\phi(r) = \frac{ 1.5 \left(r+\left| r \right| \right)}{ \left(r+2 \right)} , \lim_{r \rightarrow \infty}\phi_{hc}(r) = 3`
- HQUICK (not 2nd order TVD) (Waterson and Deconinck, 1995):
:math:`\phi(r) = \frac{2 \left(r + \left|r \right| \right)}{ \left(r+3 \right)}, \lim_{r \rightarrow \infty}\phi_{hq}(r) = 4`
- Koren (Koren, 1993):
:math:`\phi(r) = \max \left[ 0, \min \left(2 r, \left(2 + r \right)/3, 2 \right) \right], \lim_{r \rightarrow \infty}\phi(r) = 2`
- minmod - symmetric (Philip and Roe, 1986):
:math:`\phi (r) = \max \left[ 0 , \min \left( 1 , r \right) \right], \lim_{r \rightarrow \infty}\phi(r) = 1`
- monotonized central (MC) – symmetric (van Leer, 1977):
:math:`\phi (r) = \max \left[ 0 , \min \left( 2 r, 0.5 (1+r), 2 \right) \right] , \lim_{r \rightarrow \infty}\phi(r) = 2`
- Osher (Chatkravathy and Osher, 1983):
:math:`\phi (r) = \max \left[ 0 , \min \left( r, \beta \right) \right], \left(1 \leq \beta \leq 2 \right), \lim_{r \rightarrow \infty}\phi (r) = \beta`
- ospre - symmetric (Waterson and Deconinck, 1995):
:math:`\phi (r) = \frac{1.5 \left(r^2 + r \right) }{\left(r^2 + r +1 \right)} , \lim_{r \rightarrow \infty}\phi (r) = 1.5`
- smart (not 2nd order TVD) (Gaskell and Lau, 1988):
:math:`\phi(r) = \max \left[ 0, \min \left(2 r, \left(0.25 + 0.75 r \right), 4 \right) \right], \lim_{r \rightarrow \infty}\phi(r) = 4`
- superbee – symmetric (Roe, 1986):
:math:`\phi (r) = \max \left[ 0, \min \left( 2 r , 1 \right), \min \left( r, 2 \right) \right] , \lim_{r \rightarrow \infty}\phi (r) = 2`
- Sweby – symmetric (Sweby, 1984):
:math:`\phi (r) = \max \left[ 0 , \min \left( \beta r, 1 \right), \min \left( r, \beta \right) \right], \left(1 \leq \beta \leq 2 \right), \lim_{r \rightarrow \infty}\phi (r) = \beta`
- UMIST (Lien and Leschziner, 1994):
:math:`\phi(r) = \max \left[ 0, \min \left(2 r, \left(0.25 + 0.75 r \right), \left(0.75 + 0.25 r \right), 2 \right) \right] , \lim_{r \rightarrow \infty}\phi(r) = 2`
- van Albada 1 - symmetric (van Albada, et al., 1982):
:math:`\phi (r) = \frac{r^2 + r}{r^2 + 1 } , \lim_{r \rightarrow \infty}\phi (r) = 1`
- van Albada 2 : alternative form (not 2nd order TVD; Kermani, 2003)
:math:`\phi (r) = \frac{2 r}{r^2 + 1}, \lim_{r \rightarrow \infty}\phi(r) = 0`
- van Leer - symmetric (van Leer, 1974):
:math:`\phi (r) = \frac{r + \left| r \right| }{1 + \left| r \right| } , \lim_{r \rightarrow \infty}\phi (r) = 2`
For the diffusive flux, the gradient :math:`\left( \partial c \over \partial x \right)_{i + {1 \over 2}}`
is evaluated using the standard second-order accurate central difference formula:
.. math::
\left( \partial c \over \partial x \right)_{i + {1 \over 2}} = {{c_{i+1} - c_i} \over h}
except at the inflow and outflow boundaries where:
.. math::
\left( \partial c \over \partial x \right)_{{1 \over 2}} &= {{-8c_{1 \over 2} + 9c_1 - c_2} \over 3h} \\
\left( \partial c \over \partial x \right)_{n + {1 \over 2}} &= {{8c_{n + {1 \over 2}} - 9c_n + c_{n-1}} \over 3h}
.. py:currentmodule:: daetools.pyDAE.hr_upwind_scheme
The above convection-diffusion-reaction equation can be specified using the :py:class:`daeHRUpwindSchemeEquation` class
with the following functions:
- Accumulation term in the cell-centered finite-volume discretisation: :py:meth:`~daeHRUpwindSchemeEquation.dc_dt`:
:math:`dc\_dt(i) = \int_{\Omega_i} {\partial c_i \over \partial t} dx`
- Convection term in the cell-centered finite-volume discretisation: :py:meth:`~daeHRUpwindSchemeEquation.dc_dx`
(may contain the :math:`\mathbf{S} = {1 \over u} \int_{\Omega_i} s(x) dx` integral for the consistent discretisation
of the convection and the source terms):
:math:`dc\_dx(i) = c_{i + {1 \over 2}} - c_{i - {1 \over 2}}`
or (if the source integral :math:`\mathbf{S}` has been specified):
:math:`dc\_dx(i) = \left( c_{i + {1 \over 2}} - \mathbf{S}_{i + {1 \over 2}} \right) - \left( c_{i - {1 \over 2}} - \mathbf{S}_{i - {1 \over 2}} \right)`
- Diffusion term in the cell-centered finite-volume discretisation: :py:meth:`~daeHRUpwindSchemeEquation.d2c_dx2`:
:math:`d2c\_dx2(i) = \left( \partial c \over \partial x \right)_{i + {1 \over 2}} - \left( \partial c \over \partial x \right)_{i - {1 \over 2}}`
- Source term in the cell-centered finite-volume discretisation: :py:meth:`~daeHRUpwindSchemeEquation.source`:
:math:`source(i) = \int_{\Omega_i} s_i dx`
as given in the example below:
.. code-block:: python
class modTutorial(daeModel):
def __init__(self, Name, Parent = None, Description = ""):
daeModel.__init__(self, Name, Parent, Description)
def DeclareEquations(self):
daeModel.DeclareEquations(self)
xp = self.x.Points
Nx = self.x.NumberOfPoints
c = lambda i: self.c(i)
# 1. Declare the HR upwind scheme object:
# - c is a state variable
# - x is a domain object
# - Phi_Koren is a flux limiter function
hr = daeHRUpwindSchemeEquation(self.c, self.x, daeHRUpwindSchemeEquation.Phi_Koren, 1e-10)
# 2. Define the source term function
def s(i):
return self.c(i)**2
# 3. Declare the Convection-Diffusion-Reaction equation distributed on (0, L]:
for i in range(1, Nx):
eq = self.CreateEquation("c(%d)" % i)
eq.Residual = hr.dc_dt(i) + u * hr.dc_dx(i) - D * hr.d2c_dx2(i) - hr.source(s,i)
# Boundary conditions at x=0:
eq = self.CreateEquation("c(0)")
eq.Residual = c(0) - ...
It is desired that the discretisation of the source term is consistent with that of the advection operator.
For this purpose, if the source term integral: :math:`S(x) = {1 \over u} \int_{\Omega_i} s(x) dx` can be
calculated analytically, the convection term can be rewritten as:
.. math::
{\partial c \over \partial t} + u {\partial (c-\mathbf{S}) \over \partial x} - D {\partial^2 c \over \partial x^2} = 0
and the semi-discrete equation becomes:
.. math::
\int_{\Omega_i} {\partial c_i \over \partial t} dx + u \left[ \left( c_{i + {1 \over 2}} - \mathbf{S}_{i + {1 \over 2}} \right) - \left( c_{i - {1 \over 2}} - \mathbf{S}_{i - {1 \over 2}} \right) \right] - D \left[ \left( \partial c_i \over \partial x \right)_{i + {1 \over 2}} - \left( \partial c_i \over \partial x \right)_{i - {1 \over 2}} \right] = 0
The example above now becomes:
.. code-block:: python
class modTutorial(daeModel):
def __init__(self, Name, Parent = None, Description = ""):
daeModel.__init__(self, Name, Parent, Description)
def DeclareEquations(self):
daeModel.DeclareEquations(self)
xp = self.x.Points
Nx = self.x.NumberOfPoints
c = lambda i: self.c(i)
# 1. Declare the HR upwind scheme object:
# - c is a state variable
# - x is a domain object
# - u is velocity
# - Phi_Koren is a flux limiter function
hr = daeHRUpwindSchemeEquation(self.c, self.x, daeHRUpwindSchemeEquation.Phi_Koren, 1e-10)
# 2. Consistent discretisation of convection and source terms:
# Calculate an analytical integral of the source term S = 1/u * Integral(s(x)*dx)
def S(i):
C1 = 0.0
return c(i)**2 / 3 + C1
# 3. Declare the Convection-Diffusion-Reaction equation distributed on (0, L]
# (with the S integral in the convection term):
for i in range(1, Nx):
eq = self.CreateEquation("c(%d)" % i)
eq.Residual = hr.dc_dt(i) + u * hr.dc_dx(i, S) - D * hr.d2c_dx2(i)
# Boundary Conditions:
eq = self.CreateEquation("c(0)")
eq.Residual = c(0) - ...
.. rubric:: Footnotes
.. [#Koren] B. Koren. A robust upwind discretisation method for advection, diffusion and source terms.
In: Vreugdenhil CB, Koren B, editors. Numerical Methods for Advection–Diffusion Problems.
Braunschweig: Vieweg; 1993. `ISBN-10:3528076453 `_.
.. [#Koren2] B. Koren. A robust upwind discretization method for advection, diffusion and source terms.
Department of Numerical Mathematics. Report NM-R9308 (1993).
`PDF `_
.. [#FluxLimiters] Flux-limiter functions on `Wikipedia `_
The Finite Element Method
-------------------------
DAE Tools support numerical simulation of partial differential equations on unstructured grids using
the Finite Element method. The main idea is to utilise available state-of-the-art Finite Element
libraries (i.e. `deal.II`_) for low-level tasks such as mesh loading, management of finite element
spaces, degrees of freedom, assembly of the system stiffness and mass matrices and the system load vector,
setting the boundary conditions etc..
After the assembly phase in an external library the matrices are used to generate a set of equations
in the following form:
.. math::
\left[ M_{ij} \right] \left\{ {dx_j} \over {dt} \right\} + \left[ A_{ij} \right] \left\{ x_j \right\} = \left\{ F_i \right\}
where :math:`x_j` is a state variable, :math:`M_{ij}` and :math:`A_{ij}` are mass and stiffness matrices
and :math:`F_i` is the load vector. This system is in a general case a DAE system, although it can also be
a linear or a non-linear (if the mass matrix is zero).
The generated set of equations are solved together with the rest of equations in the model.
The unique feature of this approach is a capability to use **DAE Tools** objects (parameters and variables)
as a native data type in deal.II functions to specify boundary conditions, time varying coefficients and
source terms. This way, the non-linear finite element systems are automatically supported and the equations
resulting from the finite element discretisation are fully integrated with the rest of the model equations.
Moreover, multiple FE systems can be created and coupled together.
The information required (from the modeller's perspective):
- Mesh file with the specified boundary indicators (integers)
- Variables (degrees of freedom in deal.II) and their Finite Element spaces
- Quadrature formulas for elements and their faces
- The weak form of the problem which contains expressions for the cells' and boundary faces' contributions
to the system mass and stiffness matrix and the load vector.
The weak form expressions are specified using the **DAE Tools** API that wraps deal.II
concepts used to assembly the matrices/vectors. The weak forms in daetools
contain expressions as they would appear in typical nested for loops.
In deal.II a typical cell assembly loop (in C++) would look like
(i.e. a very simple example given in step-7):
.. code-block:: cpp
FEValues fe_values(...);
std::vector local_dof_indices;
typename DoFHandler::active_cell_iterator cell = dof_handler.begin_active(),
endc = dof_handler.end();
for(; cell != endc; ++cell)
{
fe_values.reinit(cell);
cell->get_dof_indices(local_dof_indices);
for(unsigned int q_point = 0; q_point < n_q_points; ++q_point)
{
for(unsigned int i = 0; i < dofs_per_cell; ++i)
{
for(unsigned int j = 0; j < dofs_per_cell; ++j)
{
cell_matrix(i,j) += ((fe_values.shape_grad(i,q_point) *
fe_values.shape_grad(j,q_point)
+
fe_values.shape_value(i,q_point) *
fe_values.shape_value(j,q_point)) *
fe_values.JxW(q_point));
}
cell_rhs(i) += (fe_values.shape_value(i,q_point) *
rhs_values [q_point] * fe_values.JxW(q_point));
}
}
}
An equivalent problem in **DAE Tools** creates an execution context used in a generic loop to evaluate the cell/face contributions:
.. code-block:: cpp
FEValues fe_values(...);
std::vector local_dof_indices;
// Create evaluation context objects where the expressions will be evaluated:
feCellContext cellContext(fe_values, local_dof_indices, ...);
typename DoFHandler::active_cell_iterator cell = dof_handler.begin_active(),
endc = dof_handler.end();
for(; cell != endc; ++cell)
{
// Update the evaluation context with the current cell.
// It will call fe_values.reinit(cell), cell->get_dof_indices(local_dof_indices) etc.
update(cellContext, cell);
for(unsigned int q_point = 0; q_point < n_q_points; ++q_point)
{
// update cellContext with the current quadrature point index
for(unsigned int i = 0; i < dofs_per_cell; ++i)
{
// update cellContext with the current i loop dof index
for(unsigned int j = 0; j < dofs_per_cell; ++j)
{
// update cellContext with the current j loop dof index
cell_matrix(i,j) += evaluate(cell_contribution_to_stiffness_matrix, cellContext);
}
// update cellContext with the current i, j, q indices
cell_rhs(i) += evaluate(cell_contribution_to_load_vector, cellContext);
}
}
}
Apart from specifying the weak formulation using the single expressions evaluated in a generic loop as shown above,
tuples of expressions representing independent terms evaluated in the q, i and j loops can be also used.
This is useful for complex weak form expressions involving non-linear terms (i.e. dof approximations)
and results in simpler expressions and a faster evaluation. The usage of separate items for different
loop iterations is illustrated below:
.. code-block:: cpp
FEValues fe_values(...);
std::vector local_dof_indices;
// Create evaluation context objects where the expressions will be evaluated:
feCellContext cellContext(fe_values, local_dof_indices, ...);
typename DoFHandler::active_cell_iterator cell = dof_handler.begin_active(),
endc = dof_handler.end();
for(; cell != endc; ++cell)
{
// Update the evaluation context with the current cell.
// It will call fe_values.reinit(cell), cell->get_dof_indices(local_dof_indices) etc.
update(cellContext, cell);
for(unsigned int q_point = 0; q_point < n_q_points; ++q_point)
{
// Temporary storage
Vector cell_rhs_temp(dofs_per_cell);
FullMatrix cell_matrix_temp(dofs_per_cell, dofs_per_cell);
// update cellContext with the current quadrature point index
q_loop_term = evaluate(q_loop_expression, cellContext);
for(unsigned int i = 0; i < dofs_per_cell; ++i)
{
// update cellContext with the current i loop dof index
i_loop_term = evaluate(i_loop_expression, cellContext);
for(unsigned int j = 0; j < dofs_per_cell; ++j)
{
// update cellContext with the current j loop dof index
j_loop_term = evaluate(j_loop_expression, cellContext);
cell_matrix_temp(i,j) += i_loop_term * j_loop_term;
}
cell_rhs_temp(i) += i_loop_term;
}
cell_rhs_temp *= q_loop_term;
cell_matrix_temp *= q_loop_term;
}
// Add the temporary data to the cell matrix/vector
cell_rhs += cell_rhs_temp;
cell_matrix += cell_matrix_temp;
}
Obviously, the generic loops can be used to solve many FE problems but not all.
However, they can support a large number of problems at the moment.
In the future they will be expanded to support a broader class of problems.
Equations produced by the Finite Element matrix assembly can be extremely long/complex.
Under the hood, they will be simplified as much as possible. Some examples are given below.
- From :ref:`tutorial_dealii_2`:
.. figure:: _static/tutorial_deal.ii-2-sample_expression.png
:width: 400 pt
:align: center
- From :ref:`tutorial_dealii_3`:
.. figure:: _static/tutorial_deal.ii-3-sample_expression.png
:width: 600 pt
:align: center
- From :ref:`tutorial_dealii_7`:
.. figure:: _static/tutorial_deal.ii-7-sample_expression.png
:width: 400 pt
:align: center
**DAE Tools** provide four main classes for Finite Element models using deal.II library:
1) :py:class:`~pyDealII.dealiiFiniteElementDOF_1D`, :py:class:`~pyDealII.dealiiFiniteElementDOF_2D` and
:py:class:`~pyDealII.dealiiFiniteElementDOF_3D`
In deal.II it represents a degree of freedom distributed on a finite element domain.
In **DAE Tools** it represents a variable distributed on a finite element domain.
2) :py:class:`~pyDealII.dealiiFiniteElementSystem_1D`, :py:class:`~pyDealII.dealiiFiniteElementSystem_2D` and
:py:class:`~pyDealII.dealiiFiniteElementSystem_3D` (implements :py:class:`~pyCore.daeFiniteElementObject`)
It is a wrapper around deal.II ``FESystem`` class and handles all finite element related details.
It uses information about the mesh, quadrature and face quadrature formulas, degrees of freedom
and the FE weak formulation to assemble the system's mass matrix (Mij), stiffness matrix (Aij)
and the load vector (Fi).
3) :py:class:`~pyDealII.dealiiFiniteElementWeakForm_1D`, :py:class:`~pyDealII.dealiiFiniteElementWeakForm_2D` and
:py:class:`~pyDealII.dealiiFiniteElementWeakForm_3D`
Contains weak form expressions for the contribution of FE cells to the system/stiffness matrices,
the load vector, boundary conditions and (optionally) surface/volume integrals (as an output).
4) :py:class:`~pyCore.daeFiniteElementModel`
`daeModel`-derived class that use system matrices/vectors from the :py:class:`~pyDealII.dealiiFiniteElementSystem_nD`
object to generate a system of equations.
A typical use-case scenario consists of the following steps:
1. The starting point is a definition of the :py:class:`~pyDealII.dealiiFiniteElementSystem_nD` class
(where `nD` can be `1D`, `2D` or `3D`).
That includes specification of:
* Mesh file in one of the formats supported by deal.II (`GridIn`_)
* Degrees of freedom (as a python list of :py:class:`~pyDealII.dealiiFiniteElementDOF_nD` objects).
Every dof has a name which will be also used to declare **DAE Tools** variable with the same name,
description, finite element space `FE`_ (`deal.II FiniteElement` instance) and the multiplicity
* `Quadrature`_ formulas for elements and their faces
2. Creation of :py:class:`~pyCore.daeFiniteElementModel` object (similarly to the ordinary **DAE Tools** model)
with the finite element system object as the last argument.
3. Definition of the weak form of the problem using the following functions (a version exist for 1D, 2D and 3D):
- :py:meth:`~pyDealII.phi_1D`: corresponds to `shape_value` in deal.II
- :py:meth:`~pyDealII.dphi_1D`: corresponds to `shape_grad` in deal.II
- :py:meth:`~pyDealII.d2phi_1D`: corresponds to `shape_hessian` in deal.II
- :py:meth:`~pyDealII.phi_vector_1D`: corresponds to `shape_value` of vector dofs in deal.II
- :py:meth:`~pyDealII.dphi_vector_1D`: corresponds to `shape_grad` of vector dofs in deal.II
- :py:meth:`~pyDealII.d2phi_vector_1D`: corresponds to `shape_hessian` of vector dofs in deal.II
- :py:meth:`~pyDealII.div_phi_1D`: corresponds to divergence in deal.II
- :py:meth:`~pyDealII.JxW_1D`: corresponds to the mapped quadrature weight in deal.II
- :py:meth:`~pyDealII.xyz_1D`: returns the point for the specified quadrature point in deal.II
- :py:meth:`~pyDealII.normal_1D`: corresponds to the `normal_vector` in deal.II
- :py:meth:`~pyDealII.function_value_1D`: wraps `Function` object that returns a value
- :py:meth:`~pyDealII.function_gradient_1D`: wraps `Function` object that returns a gradient
- :py:meth:`~pyDealII.function_adouble_value_1D`: wraps `Function` object that returns adouble value
- :py:meth:`~pyDealII.function_adouble_gradient_1D`: wraps `Function` object that returns adouble gradient
- :py:meth:`~pyDealII.dof_1D`: returns daetools variable at the given index (adouble object)
- :py:meth:`~pyDealII.dof_approximation_1D`: returns FE approximation of a quantity as a daetools variable (adouble object)
- :py:meth:`~pyDealII.dof_gradient_approximation_1D`: returns FE gradient approximation of a quantity as a daetools variable (adouble object)
- :py:meth:`~pyDealII.dof_hessian_approximation_1D`: returns FE hessian approximation of a quantity as a daetools variable (adouble object)
- :py:meth:`~pyDealII.vector_dof_approximation_1D`: returns FE approximation of a vector quantity as a daetools variable (adouble object)
- :py:meth:`~pyDealII.vector_dof_gradient_approximation_1D`: returns FE approximation of a vector quantity as a daetools variable (adouble object)
- :py:meth:`~pyDealII.adouble_1D`: wraps any daetools expression to be used in matrix assembly
- :py:meth:`~pyDealII.tensor1_1D`: wraps deal.II `Tensor`
- :py:meth:`~pyDealII.tensor2_1D`: wraps deal.II `Tensor`
- :py:meth:`~pyDealII.tensor3_1D`: wraps deal.II `Tensor`
- :py:meth:`~pyDealII.adouble_tensor1_1D`: wraps deal.II `Tensor`
- :py:meth:`~pyDealII.adouble_tensor2_1D`: wraps deal.II `Tensor`
- :py:meth:`~pyDealII.adouble_tensor3_1D`: wraps deal.II `Tensor`
and constants: :py:const:`~pyDealII.fe_i`, :py:const:`~pyDealII.fe_j` and :py:const:`~pyDealII.fe_q` used to access
the current indexes in the DOF and quadrature points loops.
The weak form contains the following contributions:
- `Aij` - cell contribution to the system stiffness matrix
- `Mij` - cell contribution to the system mass matrix
- `Fi` - cell contribution to the system load vector
- `boundaryFaceAij` - boundary face contribution to the system stiffness matrix
- `boundaryFaceFi` - boundary face contribution to the load vector
- `innerCellFaceAij` - inner cell face contribution to the system stiffness matrix
- `innerCellFaceFi` - inner cell face contribution to the load vector
- `functionsDirichletBC` - Dirichlet boundary conditions
- `surfaceIntegrals` - surface integrals
- `volumeIntegrals` - volume integrals
Example for the Helmholtz problem (step-7 tutorial from deal.II).
The strong form of the Helmholtz equation is given by (with Neumann boundary conditions):
.. math::
-\Delta u + u &= f \; in \; \Omega \\
{\mathbf n}\cdot \nabla u &= g \; on \; \delta \Omega
The weak form of the above equation is:
.. math::
{(\nabla u, \nabla v)}_\Omega + {(u,v)}_\Omega = {(f,v)}_\Omega + {(g,v)}_{\delta \Omega}
Cell contributions to the stiffness matrix and the load vector are:
.. math::
A_{ij} &= \left(\nabla \varphi_i, \nabla \varphi_j\right) +\left(\varphi_i, \varphi_j\right) \\
F_i &= \left(f,\varphi_i\right) + \left(g, \varphi_i\right)_{\delta \Omega}
The c++ implementation in deal.II is given in the step-7 example and in the previous c++ listing.
In **DAE Tools** the above equation is specified in the following way
(:math:`\delta \Omega` boundary is marked with id = 0 and for simplicity, :math:`f` and :math:`g`
are assumed constant):
.. code-block:: python
class modTutorial(daeModel):
def __init__(self, Name, Parent = None, Description = ""):
daeModel.__init__(self, Name, Parent, Description)
dofs = [dealiiFiniteElementDOF_2D(name='u',
description='u description',
fe = FE_Q_2D(1),
multiplicity=1)]
self.fe_system = dealiiFiniteElementSystem_2D(meshFilename = '...', # path to the .msh file
quadrature = QGauss_2D(3), # quadrature formula
faceQuadrature = QGauss_1D(3), # face quadrature formula
dofs = dofs) # degrees of freedom
self.fe_model = daeFiniteElementModel('Helmholtz', self, 'Helholtz problem', self.fe_system)
def DeclareEquations(self):
daeModel.DeclareEquations(self)
# Create some auxiliary objects for readability
phi_i = phi_2D ('u', fe_i, fe_q)
phi_j = phi_2D ('u', fe_j, fe_q)
dphi_i = dphi_2D('u', fe_i, fe_q)
dphi_j = dphi_2D('u', fe_j, fe_q)
JxW = JxW_2D(fe_q)
f = 1.0
g = 1.0
weakForm = dealiiFiniteElementWeakForm_2D(Aij = (dphi_i*dphi_j + phi_i*phi_j) * JxW,
Mij = 0.0,
Fi = phi_i * f * JxW,
boundaryFaceFi = {0 : phi_i * g * JxW} )
self.fe_system.WeakForm = weakForm
In **DAE Tools** v1.7.1 an additional way of specifying the weak formulation has been introduced. Now, weak form contributions
can also be python lists containing :py:class:`feExpression` objects or tuples of :py:class:`feExpression` objects.
Tuples can contain two or three items.
Matrix contributions contain three items representing q-loop, i-loop and j-loop expressions in the deal.ii matrix assembly.
Load vector contributions contain two items representing q-loop and i-loop expressions in the deal.ii vector assembly.
This way the expressions produced by the finite element system assembly can be much simpler and the simulations faster.
The new way of specifying weak formulations is useful mostly for specification of non-linear terms
(i.e. those including scalar or vector DOF approximations).
For instance, the convection term in the heat convection-diffusion equation (tutorial_dealii_7.py) can be specified in a
more efficient way:
.. code-block:: python
class modTutorial(daeModel):
...
def DeclareEquations(self):
...
# Contributions from the Stokes equation:
Aij_u_gradient = ...
Aij_p_gradient = ...
# Using the new way (q-loop, i-loop tuple for the load vector contributions):
Fi_buoyancy = (T_dof, -rho * beta * (gravity * phi_vector_u_i) * JxW)
# Contributions from the continuity equation:
Aij_continuity = ...
# Contributions from the heat convection-diffusion equation:
Mij_T_accumulation = ...
# Using the new way (q-loop, i-loop, j-loop tuple for matrix contributions):
Aij_T_convection = (u_dof, phi_T_i, dphi_T_j * JxW)
Aij_T_diffusion = ...
Fi_T_source = ...
# Total contributions (using the new way - python lists of expressions or tuples):
Mij = [Mij_T_accumulation]
Aij = [Aij_u_gradient + Aij_p_gradient + Aij_continuity + Aij_T_diffusion, Aij_T_convection]
Fi = [Fi_T_source, Fi_buoyancy]
weakForm = dealiiFiniteElementWeakForm_2D(Aij = Aij,
Mij = Mij,
Fi = Fi)
Using the old way the vector DOF approximation (:math:`u_{dof}`) is evaluated
:math:`N_{quadrature\,points} \cdot N_{dofs\,per\,cell} \cdot N_{dofs\,per\,cell}` times
while only :math:`N_{quadrature\,points}` evaluations are required.
A vector dof approximation is an expensive operation calculated in the following way:
.. math::
u_{dof} = \sum\limits_{j=1}^{N_{dofs\,per\,cell}} \phi^u(j,q) \cdot u(j)
where :math:`\phi^u(j,q)` is a rank=1 tensor.
Reduction in the number of evaluations by :math:`N_{dofs\,per\,cell}^2` leads to
the huge amounts of memory and computation time saved.
More information about the finite element method in **DAE Tools** can be found in the API reference
and in :doc:`tutorials-fe` (in particular :ref:`tutorial_dealii_1`).
.. _deal.II: http://dealii.org
.. _FESystem: http://www.dealii.org/developer/doxygen/deal.II/classFESystem.html
.. _FE: http://www.dealii.org/developer/doxygen/deal.II/group__fe.html
.. _GridIn: http://www.dealii.org/developer/doxygen/deal.II/classGridIn.html
.. _Quadrature: http://www.dealii.org/developer/doxygen/deal.II/group__Quadrature.html
Configuration
=============
Various options related to **DAE Tools** simulation can be set in the `daetools.cfg` configuration file (in JSON format).
The configuration file can be obtained using the global function :py:meth:`~pyCore.daeGetConfig`:
.. code-block:: python
cfg = daeGetConfig()
which returns the :py:class:`~pyCore.daeConfig` object.
The configuration file is first searched in the `HOME` directory, the application folder and finally in the default location.
It also can be specified manually using the function :py:meth:`~pyCore.daeSetConfigFile`.
However, this has to be done before the **DAE Tools** objects are created.
The current configuration file name can be retrieved using the :py:attr:`~pyCore.daeConfig.ConfigFileName` attribute.
The options can also be programmatically changed using the `Get`/`Set` functions i.e.
:py:meth:`~pyCore.daeConfig.GetBoolean`/:py:meth:`~pyCore.daeConfig.SetBoolean`:
.. code-block:: python
cfg = daeGetConfig()
checkUnitsConsistency = cfg.GetBoolean("daetools.core.checkUnitsConsistency")
cfg.SetBoolean("daetools.core.checkUnitsConsistency", True)
Supported data types are: `Boolean`, `Integer`, `Float` and `String`.
The whole configuration file with all options can be printed using:
.. code-block:: python
cfg = daeGetConfig()
print(cfg)
The sample configuration file is given below:
.. code-block:: json
{
"daetools":
{
"core":
{
"checkForInfiniteNumbers" : false,
"eventTolerance" : 1E-7,
"logIndent" : " ",
"pythonIndent" : " ",
"checkUnitsConsistency" : true,
"resetLAMatrixAfterDiscontinuity" : true,
"printInfo" : false,
"nodes":
{
"useNodeMemoryPools" : false,
"deleteNodesThreshold" : 1000000
},
"equations":
{
"simplifyExpressions" : false,
"evaluationMode" : "computeStack_OpenMP",
"evaluationTree_OpenMP" : {"numThreads" : 0},
"computeStack_OpenMP" : {"numThreads" : 0}
}
},
"activity":
{
"printHeader" : false,
"printStats" : true,
"timeHorizon" : 100.0,
"reportingInterval" : 1.0,
"reportTimeDerivatives" : false,
"reportSensitivities" : false,
"stopAtModelDiscontinuity" : true,
"reportDataAroundDiscontinuities" : true,
"objFunctionAbsoluteTolerance" : 1E-8,
"constraintsAbsoluteTolerance" : 1E-8,
"measuredVariableAbsoluteTolerance" : 1E-8
},
"datareporting":
{
"tcpipDataReceiverAddress" : "127.0.0.1",
"tcpipDataReceiverPort" : 50000,
"tcpipNumberOfRetries" : 10,
"tcpipRetryAfterMilliSecs" : 1000
},
"logging":
{
"tcpipLogAddress" : "127.0.0.1",
"tcpipLogPort" : 51000
},
"minlpsolver":
{
"printInfo": false
},
"IDAS":
{
"relativeTolerance" : 1E-5,
"integrationMode" : "Normal",
"reportDataInOneStepMode" : false,
"nextTimeAfterReinitialization" : 1E-7,
"printInfo" : false,
"numberOfSTNRebuildsDuringInitialization": 1000,
"SensitivitySolutionMethod" : "Staggered",
"SensErrCon" : false,
"maxNonlinIters" : 3,
"sensRelativeTolerance" : 1E-5,
"sensAbsoluteTolerance" : 1E-5,
"MaxOrd" : 5,
"MaxNumSteps" : 1000,
"InitStep" : 0.0,
"MaxStep" : 0.0,
"MaxErrTestFails" : 10,
"MaxNonlinIters" : 4,
"MaxConvFails" : 10,
"NonlinConvCoef" : 0.33,
"SuppressAlg" : false,
"NoInactiveRootWarn": false,
"NonlinConvCoefIC" : 0.0033,
"MaxNumStepsIC" : 5,
"MaxNumJacsIC" : 4,
"MaxNumItersIC" : 10,
"LineSearchOffIC" : false
},
"superlu":
{
"factorizationMethod" : "SamePattern_SameRowPerm",
"useUserSuppliedWorkSpace" : false,
"workspaceSizeMultiplier" : 3.0,
"workspaceMemoryIncrement" : 1.5
},
"superlu_mt":
{
"numThreads" : 0
},
"intel_pardiso":
{
"numThreads" : 0
},
"BONMIN":
{
"IPOPT":
{
"print_level" : 0,
"tol" : 1E-5,
"linear_solver" : "mumps",
"hessianApproximation" : "limited-memory",
"mu_strategy" : "adaptive"
}
},
"NLOPT":
{
"printInfo" : false,
"xtol_rel" : 1E-6,
"xtol_abs" : 1E-6,
"ftol_rel" : 1E-6,
"ftol_abs" : 1E-6,
"constr_tol" : 1E-6
},
"deal_II":
{
"printInfo": false,
"assembly":
{
"parallelAssembly" : "OpenMP",
"numThreads" : 0,
"queueSize" : 32
}
}
}
}
Units and quantities
====================
There are three classes in the framework: :py:class:`~pyUnits.base_unit`, :py:class:`~pyUnits.unit` and
:py:class:`~pyUnits.quantity`.
The :py:class:`~pyUnits.base_unit` class handles seven SI base dimensions: `length`, `mass`, `time`,
`electric current`, `temperature`, `amount of substance`, and `luminous intensity`
(`m`, `kg`, `s`, `A`, `K`, `mol`, `cd`).
The :py:class:`~pyUnits.unit` class operates on base units defined using the base seven dimensions.
The :py:class:`~pyUnits.quantity` class defines a numerical value in terms of a unit of measurement
(it contains the value and its units).
There is a large pool of `base units` and `units` defined (all base and derived SI units) in the
:py:class:`pyUnits` module:
- m
- s
- cd
- A
- mol
- kg
- g
- t
- K
- rad
- sr
- min
- hour
- day
- l
- dl
- ml
- N
- J
- W
- V
- C
- F
- Ohm
- T
- H
- S
- Wb
- Pa
- P
- St
- Bq
- Gy
- Sv
- lx
- lm
- kat
- knot
- bar
- b
- Ci
- R
- rd
- rem
and all above with 20 SI prefixes:
- yotta = 1E+24 (symbol Y)
- zetta = 1E+21 (symbol Z)
- exa = 1E+18 (symbol E)
- peta = 1E+15 (symbol P)
- tera = 1E+12 (symbol T)
- giga = 1E+9 (symbol G)
- mega = 1E+6 (symbol M)
- kilo = 1E+3 (symbol k)
- hecto = 1E+2 (symbol h)
- deka = 1E+1 (symbol da)
- deci = 1E-1 (symbol d)
- centi = 1E-2 (symbol c)
- milli = 1E-3 (symbol m)
- micro = 1E-6 (symbol u)
- nano = 1E-9 (symbol n)
- pico = 1E-12 (symbol p)
- femto = 1E-15 (symbol f)
- atto = 1E-18 (symbol a)
- zepto = 1E-21 (symbol z)
- yocto = 1E-24 (symbol y)
for instance: kmol (kilo mol), MW (mega Watt), ug (micro gram) etc.
New units can be defined in the following way:
.. code-block:: python
rho = unit({"kg":1, "dm":-3})
The constructor accepts a dictionary of `base_unit : exponent` items as its argument.
The above defines a new density unit :math:`\frac{kg}{dm^3}`.
The unit class defines mathematical operators `*`, `/` and `**` to allow creation of derived units.
Thus, the density unit can be also defined in the following way:
.. code-block:: python
mass = unit({"kg" : 1})
volume = unit({"dm" : 3})
rho = mass / volume
Quantities are created by multiplying a value with unit objects:
.. code-block:: python
heat = 1.5 * J
The :py:class:`~pyUnits.quantity` class defines all mathematical operators (`+, -, *, / and **`) and mathematical functions.
.. code-block:: python
heat = 1.5 * J
time = 12 * s
power = heat / time
Units-consistency of equations and logical conditions is strictly enforced (although it can be switched off, if required).
For instance, the operation below is not allowed:
.. code-block:: python
power = heat + time
since their units are not consistent (`J + s`).
Logging
=======
Log objects define an API for sending messages from a simulation to the user.
Currently three implementations exist: :py:class:`~pyCore.daeStdOutLog` (prints messages to the standard c++ output),
:py:class:`~daetools.pyDAE.logs.daePythonStdOutLog` (prints messages using Python :py:func:`print` function),
:py:class:`~pyCore.daeFileLog` (stores messages into a specified text file), and :py:class:`~pyCore.daeTCPIPLog`
(sends messages via TCP/IP protocol to the :py:class:`~pyCore.daeTCPIPLogServer`).
The messages are sent using :py:meth:`~pyCore.daeLog_t.Message` function.
DAE Solvers
===========
Currently, only `Sundials IDAS `_
solver is supported for the numerical solution of DAE systems and for calculation of sensitivities.
DAE solvers have some user-tunable options such as `relative` and `absolute tolerances` used to control
the accuracy of the integration process.
In **DAE Tools**, scalar relative and a vector of absolute tolerances are used.
Every variable has the default absolute tolerances set in the associated variable type.
These default values can be changed during the initialisation of the system (in :py:meth:`~pyActivity.daeSimulation.SetUpVariables`)
using the :py:meth:`~pyCore.daeVariable.SetAbsoluteTolerances` function.
On the other hand, the scalar relative tolerance can be set using the :py:attr:`~pyIDAS.daeIDAS.RelativeTolerance` attribute
or in the `daetools.cfg` configuration file. The default value is :math:`10^{-5}`.
The DAE solver statistic can be obtained after every call to one of :py:meth:`~pyActivity.daeSimulation.Integrate`
functions using the :py:attr:`~pyIDAS.daeIDAS.IntegratorStats` attribute.
It contains statistics returned by :py:func:`IDAGetIntegratorStats` and :py:func:`IDAGetNonlinSolvStats`
Sundials IDAS functions.
:py:attr:`~pyIDAS.daeIDAS.IntegratorStats` attribute is a dictionary with the following data:
.. code-block:: python
stats = {'ActualInitStep': 0.00104,
'CurrentOrder': 5.0,
'CurrentStep': 89.01075,
'CurrentTime': 1000.0,
'LastOrder': 5.0,
'LastStep': 44.50537,
'NumErrTestFails': 4.0,
'NumLinSolvSetups': 22.0,
'NumNonlinSolvConvFails': 0.0,
'NumNonlinSolvIters': 128.0,
'NumResEvals': 130.0,
'NumSteps': 91.0}
:py:class:`~pyIDAS.daeIDAS` class contains the following functions:
- :py:meth:`~pyIDAS.daeIDAS.OnCalculateResiduals` (called after every evaluation of residuals)
- :py:meth:`~pyIDAS.daeIDAS.OnCalculateJacobian` (called after every evaluation of Jacobian matrix)
- :py:meth:`~pyIDAS.daeIDAS.OnCalculateConditions` (called after every evaluation of logical conditions used in discontinuous equations)
- :py:meth:`~pyIDAS.daeIDAS.OnCalculateSensitivityResiduals` (called after every evaluation of sensitivity residuals)
The current iteration variable values, time derivatives, residuals, Jacobian matrix and sensitivity residuals
can be accessed using the following properties:
- :py:attr:`~pyIDAS.daeIDAS.Values` (:py:class:`~pyIDAS.daeRawDataArray` object that wraps the IDAS vector data structure)
- :py:attr:`~pyIDAS.daeIDAS.TimeDerivatives` (:py:class:`~pyIDAS.daeRawDataArray` object)
- :py:attr:`~pyIDAS.daeIDAS.Residuals` (:py:class:`~pyIDAS.daeRawDataArray` object)
- :py:attr:`~pyIDAS.daeIDAS.Jacobian` (:py:class:`~pyIDAS.daeDenseMatrix` object)
- :py:attr:`~pyIDAS.daeIDAS.SensitivityResiduals` (:py:class:`~pyIDAS.daeDenseMatrix` object)
User-defined functions can be attached to :py:class:`~pyIDAS.daeIDAS` objects. For instance:
.. code-block:: python
log = daePythonStdOutLog()
daesolver = daeIDAS()
datareporter = daeTCPIPDataReporter()
simulation = simTutorial()
def OnCalculateResiduals():
# In general, this function is a member of daeIDAS class.
# However, non-member functions can also be attached and the global daesolver object used.
y = daesolver.Values
yt = daesolver.TimeDerivatives
res = daesolver.Residuals
print('y: % s' % y.Values)
print('yt: % s' % yt.Values)
print('residuals: % s' % res.Values)
daesolver.OnCalculateResiduals = OnCalculateResiduals
Linear Equation Solvers
=======================
**DAE Tools** support direct dense and sparse matrix linear equation (LA) solvers (sequential and multi-threaded versions).
In addition to the built-in Sundials dense linear solver, several third party libraries are interfaced:
`SuperLU/SuperLU_MT `_,
`Pardiso `_,
`Intel Pardiso `_,
`Trilinos Amesos `_ (KLU, Umfpack, SuperLU, Lapack),
and `Trilinos AztecOO `_ (with built-in, Ifpack or ML preconditioners):
- Trilinos (Amesos, AztecOO):
:py:class:`~daetools.solvers.trilinos.pyTrilinos` class from :py:mod:`daetools.solvers.trilinos` module.
- SuperLU:
:py:class:`~daetools.solvers.superlu.pySuperLU` class from :py:mod:`daetools.solvers.superlu` module.
- SuperLU_MT:
:py:class:`~daetools.solvers.superlu_mt.pySuperLU_MT` class from :py:mod:`daetools.solvers.superlu_mt` module.
- Pardiso:
:py:class:`~daetools.solvers.pardiso.pyPardiso` class from :py:mod:`daetools.solvers.pardiso` module.
- Intel Pardiso:
:py:class:`~daetools.solvers.intel_pardiso.pyIntelPardiso` class from :py:mod:`daetools.solvers.intel_pardiso` module.
Modules are imported in the following way:
.. code-block:: python
# 1. Import Trilinos solver:
# - direct: Amesos_KLU, Amesos_Superlu, Amesos_Umfpack, Amesos_Lapack
# - iterative: AztecOO, AztecOO_Ifpack, AztecOO_ML
# The list of available solvers can be obtained using the function
# pyTrilinos.daeTrilinosSupportedSolvers().
from daetools.solvers.trilinos import pyTrilinos
# a) Amesos SuperLU solver
lasolver = pyTrilinos.daeCreateTrilinosSolver("Amesos_Superlu", "")
# b) AztecOO built-in preconditioners are specified through AZ_precond option
lasolver = pyTrilinos.daeCreateTrilinosSolver("AztecOO", "")
# c) Ifpack preconditioner can be one of: [ILU, ILUT, PointRelaxation, BlockRelaxation, IC, ICT]
lasolver = pyTrilinos.daeCreateTrilinosSolver("AztecOO_Ifpack", "PointRelaxation")
# d) ML preconditioner can be one of: [SA, DD, DD-ML, DD-ML-LU, maxwell, NSSA]
lasolver = pyTrilinos.daeCreateTrilinosSolver("AztecOO_ML", "maxwell")
# 2. Import SuperLU solver:
from daetools.solvers.superlu import pySuperLU
lasolver = pySuperLU.daeCreateSuperLUSolver()
# 3. Import SuperLU_MT solver:
from daetools.solvers.superlu_mt import pySuperLU_MT
lasolver = pySuperLU_MT.daeCreateSuperLUSolver()
# 4. Import Pardiso solver:
from daetools.solvers.pardiso import pyPardiso
lasolver = pyPardiso.daeCreatePardisoSolver()
# 5. Import Intel Pardiso solver:
from daetools.solvers.intel_pardiso import pyIntelPardiso
lasolver = pyIntelPardiso.daeCreateIntelPardisoSolver()
Once loaded, the linear solver object must be set in the DAE Solver:
.. code-block:: python
daesolver.SetLASolver(lasolver)
The incidence matrix of the DAE system can be saved in the text-only .xpm format:
.. code-block:: python
lasolver.SaveAsXPM('path to .xpm')
Data Reporting
==============
Simulation results are obtained using the data reporter and data receiver concepts.
Data reporter defines a functionality used by a simulation object to report the simulation results.
Data receiver defines a functionality/data structures for accessing the simulation results.
By default, parameters and variables are **not** reported to a data reporter.
Individual parameters/variables can be selected/deselected using the :py:attr:`~pyCore.daeVariable.ReportingOn` boolean property,
while all variables from a model and all child-models can be reported using the :py:meth:`~pyCore.daeModel.SetReportingOn` function.
In addition, time derivatives for all enabled variables can be reported using the :py:attr:`~pyActivity.daeSimulation.ReportTimeDerivatives`
property. If sensitivity analysis is enabled, the sensitivities for all enabled variables can be reported using the
:py:attr:`~pyActivity.daeSimulation.ReportSensitivities` property.
.. code-block:: python
# Enable reporting of all variables
simulation.m.SetReportingOn(True)
# Enable reporting of time derivatives for all reported variables
simulation.ReportTimeDerivatives = True
# Enable reporting of sensitivities for all reported variables
simulation.ReportSensitivities = True
There is a large number of available data reporters in **DAE Tools**:
* Data reporters that export results to a specified file format:
* Matlab .mat file (:py:class:`~daetools.pyDAE.data_reporters.daeMatlabMATFileDataReporter`)
* Excell .xls file (:py:class:`~daetools.pyDAE.data_reporters.daeExcelFileDataReporter`)
* VTK file (:py:class:`~daetools.pyDAE.data_reporters.daeVTKFileDataReporter`)
* HDF5 file (:py:class:`~daetools.pyDAE.data_reporters.daeHDF5FileDataReporter`)
* CSV file (:py:class:`~daetools.pyDAE.data_reporters.daeCSVFileDataReporter`)
* XML file (:py:class:`~daetools.pyDAE.data_reporters.daeXMLFileDataReporter`)
* JSON format (:py:class:`~daetools.pyDAE.data_reporters.daeJSONFileDataReporter`)
* Python pickle (:py:class:`~daetools.pyDAE.data_reporters.daePickleDataReporter`)
which can be opened in DAE Plotter or unpickled directly
* Simple data reporters
* Data reporter that only stores results internally but does nothing with the data
(:py:class:`~pyDataReporting.daeNoOpDataReporter`)
* Data reporter that does not store and does not process the results;
useful when the results are not needed (:py:class:`~pyDataReporting.daeBlackHoleDataReporter`)
* Other types of data reporters
* Pandas dataset (:py:class:`~daetools.pyDAE.data_reporters.daePandasDataReporter`)
* Quick matplotlib plots (:py:class:`~daetools.pyDAE.data_reporters.daePlotDataReporter`)
* A container that delegates all calls to the contained data reporters; can contain
one or more data reporters; useful to produce results in more than one format
(:py:class:`~pyDataReporting.daeDelegateDataReporter`)
* Base-classes that can be used for development of custom data reporters:
* :py:class:`~pyDataReporting.daeDataReporterLocal`
(stores results internally; can be used for any type of processing)
* :py:class:`~pyDataReporting.daeDataReporterFile`
(saves the results into a file in the :py:meth:`~pyDataReporting.daeDataReporterFile.WriteDataToFile` virtual member function)
The best starting point in creating custom data reporters is :py:class:`~pyDataReporting.daeDataReporterLocal` class.
It internally does all the processing and offers to users the :py:attr:`~pyDataReporting.daeDataReporterLocal.Process`
property (:py:class:`~pyDataReporting.daeDataReceiverProcess` instance) which contains all domains, parameters and variables in the simulation.
The following functions have to be implemented (overloaded):
- :py:meth:`~pyDataReporting.daeDataReporterLocal.Connect`:
Connects the data reporter. In the case when the local data reporter is used
it may contain a file name, for instance.
- :py:meth:`~pyDataReporting.daeDataReporterLocal.Disconnect`:
Disconnects the data reporter.
- :py:meth:`~pyDataReporting.daeDataReporterLocal.IsConnected`:
Checks if the data reporter is connected or not.
All functions must return `True` if successful or `False` otherwise.
An empty custom data reporter is presented below:
.. code-block:: python
class MyDataReporter(daeDataReporterLocal):
def __init__(self):
daeDataReporterLocal.__init__(self)
def Connect(self, ConnectString, ProcessName):
...
return True
def Disconnect(self):
...
return True
def IsConnected(self):
...
return True
To write the results into a file the :py:class:`~pyDataReporting.daeDataReporterFile` base class can be used.
It writes the data into a file in the :py:meth:`~pyDataReporting.daeDataReporterFile.WriteDataToFile` function
called in the :py:meth:`~pyDataReporting.daeDataReporterFile.Disconnect` function.
The only function that needs to be overloaded is :py:meth:`~pyDataReporting.daeDataReporterFile.WriteDataToFile`
while the base class handles all other operations.
:py:class:`~pyDataReporting.daeDataReceiverProcess` class contains the following properties that can be used
to obtain the results data from a data reporter:
- :py:attr:`~pyDataReporting.daeDataReceiverProcess.Domains` (list of :py:class:`~pyDataReporting.daeDataReceiverDomain` objects)
- :py:attr:`~pyDataReporting.daeDataReceiverProcess.Variables` (list of :py:class:`~pyDataReporting.daeDataReceiverVariable` objects)
- :py:attr:`~pyDataReporting.daeDataReceiverProcess.dictDomains` (dictionary {"domain_name" \: :py:class:`~pyDataReporting.daeDataReceiverDomain` object})
- :py:attr:`~pyDataReporting.daeDataReceiverProcess.dictVariables` (dictionary {"variable_name" \: :py:class:`~pyDataReporting.daeDataReceiverVariable` object})
- :py:attr:`~pyDataReporting.daeDataReceiverProcess.dictVariableValues` (dictionary {"variable_name" \: (ndarray_values, ndarray_time_points, domain_names, units)})
where `ndarray_values` is numpy array with values at every time point, `ndarray_time_points` is numpy array of time points,
`domains` is a list of domain points for every domain on which the variable is distributed, and `units` is string with the units.
The example below shows how to save the results to the Matlab .mat file:
.. code-block:: python
class MyDataReporter(daeDataReporterFile):
def __init__(self):
daeDataReporterFile.__init__(self)
def WriteDataToFile(self):
mdict = {}
for var in self.Process.Variables:
mdict[var.Name] = var.Values
import scipy.io
scipy.io.savemat(self.ConnectString,
mdict,
appendmat=False,
format='5',
long_field_names=False,
do_compression=False,
oned_as='row')
The filename is provided as the first argument (`connectString`) of the
:py:meth:`~pyDataReporting.daeDataReporterLocal.Connect` function.
Only one data receiver is implemented: :py:class:`~pyDataReporting.daeTCPIPDataReceiver`.
It is used by the **DAE Plotter** application to receive the results.
DAE Plotter Application
-----------------------
The simulation results can be plotted using the **DAE Tools Plotter** application.
It can be started using one of the following commands:
.. code-block:: bash
# Platform independent:
python -m daetools.dae_plotter.plotter
# GNU/Linux and macOS:
daeplotter
# Windows:
daeplotter.bat
.. figure:: _static/Screenshot-DAEPlotter.png
:width: 250 pt
:align: center
It supports the following types of plots:
- 2D plot (using matplotlib)
- 3D plot (Mayavi)
- Animated 2D plot (using matplotlib)
- Auto-update 2D plot (using matplotlib)
- User-defined 2D plot (using the user-supplied source code)
- *Variable 1* vs. *Variable 2* 2D plot (using matplotlib)
- 2D plot of user-provided data (using matplotlib)
- 2D plot using the .vtk file
After choosing a desired type, a **Choose variable**
dialog appears where a variable to be plotted can be selected and information about domains
specified - some domains should be fixed while leaving another free by selecting `*` from the list
(to create a 2D plot one domain must remain free, while for a 3D plot two domains):
.. figure:: _static/Screenshot-ChooseVariable.png
:width: 350 pt
:align: center
2D plots can be saved as templates (.pt files) which store the information in `JSON` format.
.. code-block:: javascript
{
"curves": [
[
"tutorial4.T",
[
-1
],
[
"*"
],
"tutorial4.T(*)",
{
"color": "black",
"linestyle": "-",
"linewidth": 0.5,
"marker": "o",
"markeredgecolor": "black",
"markerfacecolor": "black",
"markersize": 6
}
]
],
"gridOn": true,
"legendOn": true,
"plotTitle": "",
"updateInterval": 0,
"windowTitle": "tutorial4.T(*)",
"xlabel": "Time (s)",
"xmax": 525.0,
"xmax_policy": 0,
"xmin": -25.0,
"xmin_policy": 0,
"xscale": "linear",
"xtransform": 1.0,
"ylabel": "T (K)",
"ymax": 361.74772465755922,
"ymax_policy": 1,
"ymin": 279.2499308975365,
"ymin_policy": 1,
"yscale": "linear",
"ytransform": 1.0,
}
.. py:currentmodule:: daetools.pyDAE.pyActivity
Executing simulations
=====================
Initialising domains and parameters
-----------------------------------
Domains and parameters are initialised in the :py:meth:`~pyActivity.daeSimulation.SetUpParametersAndDomains` function.
In the case of deep model hierarchies domains and parameters having identical names can be initialised using the propagation technique and
:py:meth:`~pyCore.daeModel.PropagateDomain` and :py:meth:`~pyCore.daeModel.PropagateParameter` functions. These functions traverse down all
models in the hierarchy (starting with the calling model) and copy the properties of the given domain/parameter to all domains/properties
with the same name.
Initialising variables (initial conditions, degrees of freedom)
---------------------------------------------------------------
All information related to variables are set in the :py:meth:`~pyActivity.daeSimulation.SetUpVariables` function.
Here, operations such as setting initial conditions, initial guesses, absolute tolerances and fixing degrees of freedom can be performed.
There are two initial condition modes supported by the Sundials IDAS solver (:py:data:`~pyCore.daeeInitialConditionMode`):
- :py:data:`~pyCore.daeeInitialConditionMode.eAlgebraicValuesProvided` (the default)
Initial conditions are set using the :py:meth:`~pyCore.daeVariable.SetInitialCondition` function.
- :py:data:`~pyCore.daeeInitialConditionMode.eQuasiSteadyState`
DAE solver assumes all derivatives to initially be zero (thus the name *Quasi Steady State*).
The initial condition mode can be set using the :py:attr:`~pyActivity.daeSimulation.InitialConditionMode` property
(during the initialisation of the system in the :py:meth:`~pyActivity.daeSimulation.SetUpVariables` function).
The initial conditions for Finite Element models are set in a different way (due to a nature of the block matrices used).
Here, the function :py:meth:`~daetools.solvers.deal_II.setFEInitialConditions` is used. It accepts the following arguments:
- `FEmodel` is an instance of :py:class:`~pyCore.daeFiniteElementModel` class
- `FEsystem` is an instance of :py:class:`~pyCore.daeFiniteElementObject_t` class
(i.e. :py:class:`~pyDealII.dealiiFiniteElementSystem_2D`)
- `dofName` is a string with the dof name
- `ic` can be a float value or a callable that returns a float value for the given arguments:
`index_in_the_domain` and `overall_index`
.. code-block:: python
def SetUpVariables(self):
setFEInitialConditions(self.m.fe_model, self.m.fe_system, 'T', 300.0)
Developing schedules (operating procedures)
-------------------------------------------
The model specified in the simulation constructor is integrated in time in the :py:meth:`~pyActivity.daeSimulation.Run` function.
The default implementation iterates over the specified time horizon (:py:attr:`~pyActivity.daeSimulation.TimeHorizon` property),
integrates for time intervals specified using the :py:attr:`~pyActivity.daeSimulation.ReportingInterval` property and reports the data.
If a discontinuity occurs during the current integration interval, the precise discontinuity time is determined,
model integrated until the discontinuity time point, data reported, the DAE system reinitialised and integration resumed.
The user-defined schedule can be implemented by overloading the :py:meth:`~pyActivity.daeSimulation.Run` function. Here, a custom
schedule can be specified using the following functions from the :py:class:`~pyActivity.daeSimulation` class:
- :py:meth:`~pyActivity.daeSimulation.Integrate` integrates the system until the given time horizon is reached and reports the data
after every reporting interval. If the `stopCriterion` argument is set to `eStopAtModelDiscontinuity` the simulation will be stopped
at every discontinuity occurrence and if the `reportDataAroundDiscontinuities` argument is set to `True` the data reported
at the discontinuity and after the system is reinitialised. The default value for `reportDataAroundDiscontinuities` is `True`.
The condition that triggered the discontinuity can be retrieved using the :py:attr:`~pyActivity.daeSimulation.LastSatisfiedCondition`
property which returns the :py:class:`~pyCore.daeCondition` object.
- :py:meth:`~pyActivity.daeSimulation.IntegrateForTimeInterval` integrates the system for the given time interval (in seconds).
Its behaviour can be controlled using the `stopCriterion` and `reportDataAroundDiscontinuities` arguments in the same way as in the
:py:meth:`~pyActivity.daeSimulation.Integrate` function.
- :py:meth:`~pyActivity.daeSimulation.IntegrateUntilTime` integrates the system until the specified time is reached (in seconds).
Its behaviour can be controlled using the `stopCriterion` and `reportDataAroundDiscontinuities` arguments in the same way as in the
:py:meth:`~pyActivity.daeSimulation.Integrate` function.
- :py:meth:`~pyActivity.daeSimulation.IntegrateForOneStep` integrates the system for a single time step (DAE solver dependent)
Its behaviour can be controlled using the `stopCriterion` and `reportDataAroundDiscontinuities` arguments in the same way as in the
:py:meth:`~pyActivity.daeSimulation.Integrate` function.
- :py:meth:`~pyActivity.daeSimulation.ReportData` reports the data at the current time in simulation.
- The functions :py:meth:`~pyActivity.daeSimulation.ReSetInitialCondition` and :py:meth:`~pyActivity.daeSimulation.ReAssignValue`
can be used to re-set the initial conditions and re-assign the values of degrees of freedom. These calls **must** be followed
by a call to the :py:meth:`~pyActivity.daeSimulation.ReInitialize` function to reinitialise the system after the variable values
have been modified.
The functionality of the default :py:meth:`~pyActivity.daeSimulation.Run` function is roughly identical to the following python code:
.. code-block:: python
def Run(self):
# Python implementation of daeSimulation::Run() C++ function.
import math
while self.CurrentTime < self.TimeHorizon:
# Get the time step (based on the TimeHorizon and the ReportingInterval).
# Do not allow to get past the TimeHorizon.
t = self.NextReportingTime
if t > self.TimeHorizon:
t = self.TimeHorizon
# If the flag is set - a user tries to pause the simulation, therefore return.
if self.ActivityAction == ePauseActivity:
self.Log.Message("Activity paused by the user", 0)
return
# If a discontinuity is found, loop until the end of the integration period.
# The data will be reported around discontinuities!
while t > self.CurrentTime:
self.Log.Message("Integrating from [%f] to [%f] ..." % (self.CurrentTime, t), 0)
self.IntegrateUntilTime(t, eStopAtModelDiscontinuity, True)
# After the integration period, report the data.
self.ReportData(self.CurrentTime)
# Set the simulation progress.
newProgress = math.ceil(100.0 * self.CurrentTime / self.TimeHorizon)
if newProgress > self.Log.Progress:
self.Log.Progress = newProgress
A very simple schedule can be found in the :ref:`tutorial7`:
.. code-block:: python
# The schedule:
# 1. Re-assign the value of Qin to 500W. After re-assigning DOFs or re-setting initial conditions
# the function daeSimulation.Reinitialize() has to be called to reinitialise the DAE system.
# Run the simulation for 100s using the function daeSimulation.IntegrateForTimeInterval()
# and report the data using the function daeSimulation.ReportData().
# 2. Re-assign the value of Qin to 750W and re-initialise the system.
# Use the function daeSimulation.IntegrateUntilTime() to run until the time reaches 200s
# and report the data.
# 3. Re-assign the variable Qin to 1000W and re-initialise the system.
# Use the function daeSimulation.IntegrateForOneStep() to integrate in OneStep mode for 100s
# and report the data at every time step.
# 4. Re-assign the variable Qin to 1500W, re-set T to 300K and re-initialise the system.
# Run the simulation until the TimeHorizon is reached using the function
# daeSimulation.Integrate() and report the data.
def Run(self):
# 1. Set Qin=500W and integrate for 100s
self.m.Qin.ReAssignValue(500 * W)
self.Reinitialize()
self.ReportData(self.CurrentTime)
self.Log.Message("OP: Integrating for 100 seconds ... ", 0)
time = self.IntegrateForTimeInterval(100, eDoNotStopAtDiscontinuity)
self.ReportData(self.CurrentTime)
self.Log.SetProgress(int(100.0 * self.CurrentTime/self.TimeHorizon))
# 2. Set Qin=750W and integrate until time = 200s
self.m.Qin.ReAssignValue(750 * W)
self.Reinitialize()
self.ReportData(self.CurrentTime)
self.Log.Message("OP: Integrating until time = 200 seconds ... ", 0)
time = self.IntegrateUntilTime(200, eDoNotStopAtDiscontinuity)
self.ReportData(self.CurrentTime)
self.Log.SetProgress(int(100.0 * self.CurrentTime/self.TimeHorizon))
# 3. Set Qin=1000W and integrate in OneStep mode for 100 seconds.
self.m.Qin.ReAssignValue(1000 * W)
self.Reinitialize()
t_end = time + 100.0
self.Log.Message("OP: Integrating in one step mode:", 0)
while time < t_end:
msg = " Integrated from %.10f to " % time
time = self.IntegrateForOneStep(eDoNotStopAtDiscontinuity)
self.ReportData(self.CurrentTime)
msg += "%.10f ... " % time
self.Log.Message(msg, 0)
# 4. Set Qin=1500W and integrate until the specified TimeHorizon is reached
self.m.Qin.ReAssignValue(1500 * W)
self.m.T.ReSetInitialCondition(300 * K)
self.Reinitialize()
self.ReportData(self.CurrentTime)
self.Log.SetProgress(int(100.0 * self.CurrentTime/self.TimeHorizon))
self.Log.Message("OP: Integrating from " + str(time) + " to the time horizon (" + str(self.TimeHorizon) + ") ... ", 0)
time = self.Integrate(eDoNotStopAtDiscontinuity)
self.ReportData(self.CurrentTime)
self.Log.SetProgress(int(100.0 * self.CurrentTime/self.TimeHorizon))
self.Log.Message("OP: Finished", 0)
In addition, the :ref:`tutorial_adv_1` illustrates interactive schedules where the `pyQt` graphical user interface (GUI)
is utilised to manipulate the model variables and integrate the system in time:
.. figure:: _static/tutorial_adv_1-screenshot.png
:width: 400 pt
:align: center
Exploring models using the GUI (Simulation Explorer)
----------------------------------------------------
The model structure and the domains/parameters/variables data can be interactively explored and updated using the `Simulation Explorer` GUI.
The `Simulation Explorer` can be started using the following code:
.. code-block:: python
...
# Create and initialize the simulation and the auxiliary objects and
# determine the consistent initial conditions using the SolveInitial function.
...
simulation.SolveInitial()
# Show the simulation explorer GUI
app = daeCreateQtApplication(sys.argv)
se = daeSimulationExplorer(app, simulation)
se.exec_()
or from the `DAE Toools Simulator` **Start/Show simulation explorer ad run...** button:
.. figure:: _static/Simulator-StartSimulationExplorer.png
:width: 400 pt
:align: center
Screenshots of the running `Simulation Explorer`:
.. figure:: _static/SimulationExplorer1.png
:width: 400 pt
:align: center
Runtime simulation options
.. figure:: _static/SimulationExplorer2.png
:width: 400 pt
:align: center
Parameters values
.. figure:: _static/SimulationExplorer3.png
:width: 400 pt
:align: center
Initial conditions
.. figure:: _static/SimulationExplorer4.png
:width: 400 pt
:align: center
Degrees of freedom
Parallel computation
====================
Within the DAE Tools only the shared-memory parallel programming model is supported.
Simulation on message-passing systems is available through the OpenCS code generator (section :ref:`code_generation`).
The following parts of the code support parallelisation.
Evaluation of equations
-----------------------
Equations residuals, Jacobian matrix and sensitivity residuals can be evaluated in parallel
using two methods:
1. The Evaluation Tree approach (default)
Equations are transformed using the operator overloading technique into a tree-like
data structure called an Evaluation Tree.
For instance, it is already shown that the equation :math:`\frac{x[0]-x[1]} {x[2]-x[3]} + 1.2 \cdot sin(x[0]) = 0`
can be represented as:
.. figure:: _static/evaluation_tree.png
:width: 350 pt
:align: center
Equations can be evaluated in parallel using OpenMP API.
This evaluation mode is specified in the section `daetools.core.equations` of daetools.cfg config file
by setting the `evaluationMode` option to `"evaluationTree_OpenMP"`.
If `numThreads` is 0 the default number of threads is used (the number of cores in the system).
Sequential evaluation is achieved by setting `numThreads` to 1.
2. The Compute Stack approach
Equations are transformed using the operator overloading technique into a postfix notation
expression stacks.
Each operand/operation is described by the specially designed data structure, and every equation
is transformed into an array of these structures (a Compute Stack).
Compute Stacks are evaluated by a stack machine using a FIFO queue.
As an example, the equation above can also be represented as a Compute Stack:
.. figure:: _static/compute_stack.png
:width: 600 pt
:align: center
Equations can be evaluated in parallel using:
a) OpenMP API for general purpose processors and manycore devices (i.e. Xeon Phi)
This evaluation mode is specified in the section `daetools.core.equations` of daetools.cfg config file
by setting the `evaluationMode` option to `"computeStack_OpenMP"`.
If `numThreads` is 0 the default number of threads is used (the number of cores in the system).
Sequential evaluation is achieved by setting `numThreads` to 1.
b) OpenCL framework for streaming processors (GPU, GPGA) and heterogeneous systems
This type is implemented in an external Python module :py:mod:`pyEvaluator_OpenCL`.
It is up to one order of magnitude faster than the Evaluation Tree approach.
However, it does not support external functions nor thermo-physical packages.
It is required to install OpenCL drivers/runtime libraries.
Good starting points for different hardware vendors could be:
- InteL: ``_
- AMD: ``_
- NVidia: ``_
The available OpenCL platforms and devices can be listed using
:py:meth:`~pyEvaluator_OpenCL.AvailableOpenCLPlatforms` and
:py:meth:`~pyEvaluator_OpenCL.AvailableOpenCLDevices` functions:
.. code-block:: python
from daetools.pyDAE.evaluator_opencl import pyEvaluator_OpenCL
openclPlatforms = pyEvaluator_OpenCL.AvailableOpenCLPlatforms()
openclDevices = pyEvaluator_OpenCL.AvailableOpenCLDevices()
A sample list of available OpenCL platforms and devices (from :ref:`tutorial21`) are presented below:
.. code-block:: none
Available OpenCL platforms:
Platform: NVIDIA CUDA
PlatformID: 0
Vendor: NVIDIA Corporation
Version: OpenCL 1.2 CUDA 9.0.194
Platform: Intel(R) OpenCL
PlatformID: 1
Vendor: Intel(R) Corporation
Version: OpenCL 2.0
Available OpenCL devices:
Device: GeForce GTX 950M
PlatformID: 0
DeviceID: 0
DeviceVersion: OpenCL 1.2 CUDA
DriverVersion: 384.90
OpenCLVersion: OpenCL C 1.2
MaxComputeUnits: 5
Device: Intel(R) HD Graphics
PlatformID: 1
DeviceID: 0
DeviceVersion: OpenCL 2.0
DriverVersion: r5.0.63503
OpenCLVersion: OpenCL C 2.0
MaxComputeUnits: 24
Device: Intel(R) Core(TM) i7-6700HQ CPU @ 2.60GHz
PlatformID: 1
DeviceID: 1
DeviceVersion: OpenCL 2.0 (Build 475)
DriverVersion: 1.2.0.475
OpenCLVersion: OpenCL C 2.0
MaxComputeUnits: 8
External Compute Stack Evaluators are set using :py:meth:`daeSimulation.SetComputeStackEvaluator` function:
.. code-block:: python
from daetools.pyDAE.evaluator_opencl import pyEvaluator_OpenCL
# OpenCL evaluators can use a single or multiple OpenCL devices.
# a) Single OpenCLdevice:
evaluator = pyEvaluator_OpenCL.CreateComputeStackEvaluator(platformID = 0, deviceID = 0)
# b) Multiple OpenCL devices (for heterogenous computing):
# They require the platformID, deviceID and percentage of the total work
# to be specified for each device.
evaluator = pyEvaluator_OpenCL.CreateComputeStackEvaluator( [(0, 0, 60), (1, 1, 40)] )
simulation.SetComputeStackEvaluator(evaluator)
Assembly of Finite Element systems
----------------------------------
Assembly of Finite Element matrices can be performed in parallel using OpenMP API.
The options are located in the daetools.cfg config file, section `daetools.deal_II.assembly`.
The parallel assembly can be switched on by setting the `parallelAssembly` option.
`parallelAssembly` can be `Sequential` or `OpenMP`.
If `numThreads` is 0 the default number of threads will be used (typically the number of cores in the system).
The `queueSize` specifies the size of the internal queue; when this size is reached the local data are
copied to the global matrices.
Solution of systems of linear equations
---------------------------------------
The following multi-threaded linear solvers are supported: SuperLU_MT, Pardiso and Intel Pardiso.
Global Sensitivity Analysis
---------------------------
Simulations can be performed using multiprocessing.Pool available in Python.
DAE Tools web services
======================
Simulations can be loaded and executed using the Representational state transfer (REST) web service.
RESTful API is provided for almost complete :py:class:`~pyActivity.daeSimulation` functionality (`daetools_ws`)
and for all FMI v2 for co-simulation functions (`daetools_fmi_ws`).
The RESTful API is language-independent and can be used from any language (i.e. JavaScript, Python, C++ ...).
.. figure:: _static/daetools_web_service.png
:width: 500 pt
:align: center
REST web service
Web services can be started using the following commands:
.. code-block:: bash
# DAE Tools simulations web service.
# By default, starts the web service on the "localhost" (http://127.0.0.1:8001)
python -m daetools.dae_simulator.daetools_ws
.. code-block:: python
# Individual simulations as a web service.
# Add the simulation names to the 'availableSimulations' dictionary and start the service.
# The loaderFunction is a Python callable object that returns an initialised simulation object
# and will be called when a client requests a simulation by name.
availableSimulations = {}
availableSimulations['tutorial_che_1'] = loaderFunction
daeSimulationWebService.runSimulationsAsWebService(availableSimulations)
.. code-block:: bash
# FMI v2 web service.
# By default, starts the web service on the "localhost" (http://127.0.0.1:8002)
python -m daetools.dae_simulator.daetools_fmi_ws
JavaScript client classes are developed for both types of web services.
Classes are located in the `daetools/dae_simulator` folder. `web_service.js` contains the web
service client, `daetools_ws.js` contains :py:class:`~pyActivity.daeSimulation` interface and
`daetools_fmi_ws.js` contains FMI interface.
JavaScript client interface for `daetools_ws` simulations web service:
.. code-block:: javascript
class daeSimulation
{
LoadSimulation(pythonFile, loadCallable, args);
LoadTutorial(tutorialName);
LoadSimulationByName(simulationName, args);
AvailableSimulations();
Finalize();
get ModelInfo();
get Name();
get DataReporter();
get DAESolver();
get CurrentTime();
get TimeHorizon();
set TimeHorizon(timeHorizon);
get ReportingInterval();
set ReportingInterval(reportingInterval);
Run();
SolveInitial();
Reinitialize();
Reset();
ReportData();
Integrate(stopAtDiscontinuity, reportDataAroundDiscontinuities);
IntegrateForTimeInterval(timeInterval, stopAtDiscontinuity, reportDataAroundDiscontinuities);
IntegrateUntilTime(time, stopAtDiscontinuity, reportDataAroundDiscontinuities);
GetParameterValue(name);
GetVariableValue(name);
GetActiveState(stnName);
SetParameterValue(name, value);
ReAssignValue(name, value);
ReSetInitialCondition(name, value);
SetActiveState(stnName, activeState);
}
JavaScript client interface for `daetools_fmi_ws` FMI web service:
.. code-block:: javascript
class daeFMI2Simulation
{
fmi2Instantiate(instanceName, guid, resourceLocation);
fmi2Terminate();
fmi2FreeInstance();
fmi2SetupExperiment(toleranceDefined, tolerance, startTime, stopTimeDefined, stopTime);
fmi2EnterInitializationMode();
fmi2ExitInitializationMode();
fmi2Reset();
fmi2DoStep(currentCommunicationPoint, communicationStepSize, noSetFMUStatePriorToCurrentPoint);
fmi2CancelStep();
fmi2GetReal(valReferences);
fmi2SetReal(valReferences, values);
fmi2GetString(valReferences);
fmi2SetString(valReferences, values);
fmi2GetBoolean(valReferences);
fmi2SetBoolean(valReferences, values);
fmi2GetInteger(valReferences);
fmi2SetInteger(valReferences, values);
}
A sample simulation in JavaScript is given in the following listing:
.. code-block:: javascript
// Create the web service client.
var webService = new daeWebService('127.0.0.1', 8001, 'daetools_ws');
// Create the simulation object.
var simulation = new daeSimulation(webService);
// Load simulation by name (if it has been started as a web service):
simulation.LoadSimulationByName('simulationName', JSON.stringify(args));
// or load one of tutorials:
simulation.LoadTutorial('tutorialName');
// or load simulation by specifying a path to Python file, loading function and its arguments:
simulation.LoadSimulation('pythonFile', 'loadCallable', args)
var reportingInterval = simulation.ReportingInterval;
var timeHorizon = simulation.TimeHorizon;
var currentTime = simulation.CurrentTime;
// Get the consistent initial conditions.
simulation.SolveInitial();
// Integrate the system in a loop until the time horizon is reached.
while(currentTime < timeHorizon)
{
// Get the next time (based on the TimeHorizon and the ReportingInterval).
// Do not allow to get past the TimeHorizon.
var t = currentTime + reportingInterval;
if(t > timeHorizon)
t = timeHorizon;
// If a discontinuity is found, loop until the end of the integration period.
// The data will be reported around discontinuities!
while(t > currentTime)
{
log('Integrating from ' + currentTime.toFixed(2) + ' to ' + t.toFixed(2) + ' ...');
currentTime = simulation.IntegrateUntilTime(t, true, true);
}
// After the integration period, report the data.
simulation.ReportData()
// Set the simulation progress.
var newProgress = Math.ceil(100.0 * currentTime / timeHorizon)
setProgress(newProgress);
}
// Clean up.
simulation.Finalize();
Calls to the above functions translate to HTTP requests. For instance, a call to simulation.IntegrateUntilTime(100.0, true, true)
results in a HTTP request sent to the `daetools_ws` web service:
`http://127.0.0.1:8001/daetools_ws?simulationID=ba2a694a-b591-11e7-9f58-680715e7b846&function=IntegrateUntilTime&time=100.0&stopAtDiscontinuity=true&reportDataAroundDiscontinuities=true`.
The response is returned in JSON format.
Sample html pages with the Graphical User Interface (GUI) using JavaScript and Plotly.js library
are provided for both types of web services and presented in figure below. Web pages are located
in the `daetools/dae_simulator` folder:
`daetools_ws_test.html `_ and
`daetools_fmi_ws_test.html `_.
.. figure:: _static/daetools_ws_html.png
:width: 500 pt
:align: center
HTML+JavaScript GUI for `daetools_ws` web service client
.. figure:: _static/daetools_ws_html_plots.png
:width: 500 pt
:align: center
Plots produced by HTML GUI for `daetools_ws` web service client using Plotly.js library
.. figure:: _static/daetools_fmi_ws_html.png
:width: 500 pt
:align: center
HTML+JavaScript GUI for `daetools_fmi_ws` web service client
.. figure:: _static/daetools_fmi_ws_html_plots.png
:width: 500 pt
:align: center
Plots produced by `daetools_fmi_ws` web service client using Plotly.js library
.. _code_generation:
Generating code for other modelling languages
=============================================
**DAE Tools** can generate code for several modelling or programming languages (Modelica, gPROMS, c99, OpenCS).
The code generation should be performed after the simulation is initialised (ideally after a call to
:py:meth:`~pyActivity.daeSimulation.SolveInitial` so that the consistent initial conditions are determined and available).
.. code-block:: python
# Generate Modelica source code:
from daetools.code_generators.modelica import daeCodeGenerator_Modelica
cg = daeCodeGenerator_Modelica()
cg.generateSimulation(simulation, tmp_folder)
# Generate gPROMS source code:
from daetools.code_generators.gproms import daeCodeGenerator_gPROMS
cg = daeCodeGenerator_gPROMS()
cg.generateSimulation(simulation, tmp_folder)
# Generate OpenCS models to be simulated using MPI on 4 nodes:
from daetools.code_generators.opencs import daeCodeGenerator_OpenCS
cg = daeCodeGenerator_OpenCS()
cg.generateSimulation(simulation, tmp_folder, 4)
The :py:meth:`~daetools.code_generators.daeCodeGenerator.generateSimulation` function requires an initialised simulation object
and the directory where the code will be generated.
The code can be also generated from the `Generate code...` option in the Simulation Explorer GUI:
.. figure:: _static/CodeGeneration.png
:width: 400 pt
:align: center
Code generation from the Simulation Explorer GUI
More details can be found in :ref:`tutorial_adv_3` and :ref:`tutorial_adv_4`.
Simulating models in other simulators (co-simulation)
=====================================================
**DAE Tools** can also wrap the models developed in python for use in other software/simulators:
`FMI` (Functional Mock-up Interface for co-simulation), `Matlab`, `Scilab` and `GNU Octave` *MEX functions*,
and `Simulink` *S-functions*.
Functional Mock-up Interface for co-simulation (FMI)
----------------------------------------------------
**DAE Tools** models can be used to generate .fmu files for `FMI for co-simulation`.
.. topic:: Nota bene
The model inputs are defined by the inlet ports while the model outputs by the outlet ports.
In addition, assigned variables (degrees of freedom) from the top-level model are added to
the list of inputs and the rest of variables from the top-level model can be added as either
local FMI variables or as outputs.
Generating `FMU` files for use in FMI capable simulators is similar to the code-generation procedure.
The :py:meth:`~daetools.code_generators.daeCodeGenerator_FMI.generateSimulation` function generates a `simulation name.fmu` file
which is basically a zip file with the files required by the `FMI standard`.
Here, the :py:meth:`~daetools.code_generators.daeCodeGenerator_FMI.generateSimulation` function requires the following arguments:
- `simulation`: initialised daeSimulation object
- `directory`: directory where the .fmu file will be generated
- `py_simulation_file`: a path to the python file with the simulation source code
- `create_simulation_callable_object`: the name of python callable object that returns an *initialized* :py:class:`~pyActivity.daeSimulation` object
- `arguments`: arguments for the above callable object; can be anything that python accepts
- `additional_files`: paths to the additional files to pack into a .fmu file (empty list by default)
- `localsAsOutputs`: if True all variables from the top-level model will be treated as model outputs, otherwise as locals
- `add_xml_stylesheet`: if True the xsl file `daetools-fmi.xsl` will be added to the modelDescription.xml file
- `useWebService`: if True the web service version (`fmi_ws`) shared library will be packed into the fmu file.
DAE Tools FMI web service can be started using: `python -m daetools.dae_simulator.daetools_fmi_ws`.
The fmu will attempt to start it automatically and connect during the initialisation phase.
All tutorials provide `run(**kwargs)` function that can be used to run a simulation (using the console or Qt GUI)
and for co-simulation to return an initialised simulation object (if the `initializeAndReturn` argument is True).
This way the same setup can be used for different activities.
.. code-block:: python
from daetools.code_generators.fmi import daeCodeGenerator_FMI
cg = daeCodeGenerator_FMI()
cg.generateSimulation(simulation,
directory = tmp_folder,
py_simulation_file = __file__,
callable_object_name = 'run',
arguments = 'initializeAndReturn = True',
additional_files = [],
localsAsOutputs = True,
add_xml_stylesheet = True)
In addition, the `create_simulation_callable_object` argument can be any other user-defined function
(as specified in the :ref:`tutorial_adv_3` example):
.. code-block:: python
# This function is used by daetools_mex, daetools_s and daetools_fmi_cs to load a simulation.
# It can have any number of arguments, but must return an initialized daeSimulation object.
def create_simulation():
# Create Log, Solver, DataReporter and Simulation object
log = daePythonStdOutLog()
daesolver = daeIDAS()
datareporter = daeNoOpDataReporter()
simulation = simTutorial()
# Enable reporting of all variables
simulation.m.SetReportingOn(True)
# Set the time horizon and the reporting interval
simulation.ReportingInterval = 1
simulation.TimeHorizon = 100
# Initialize the simulation
simulation.Initialize(daesolver, datareporter, log)
return simulation
.. _MEX_functions:
MEX functions
-------------
In order to simulate **DAE Tools** models from Matlab/Scilab/GNU Octave the wrapper code first needs to be compiled
from source. The wrapper code is located in the `daetools/trunk/mex` directory. The compilation procedure requires
a compiled `cdaeSimulationLoader-py[Major][(Minor]` library (which is a part of **DAE Tools** installation) located in the
`daetools/solibs/Platform_Architecture` directory (i.e. `daetools/solibs/Windows_win32`). That directory has to be
made available to the mex compiler and Matlab during runtime:
1. Set environmental variable `LD_LIBRARY_PATH` in Matlab (using the `setenv` and `getenv` commands)
2. Set `RPATH` in the mex file during the linking procedure
For instance, setting the `LD_LIBRARY_PATH` environmental variable can be done with the following code:
.. code-block:: bash
% Note the path separator (; or :)
% Windows
setenv('LD_LIBRARY_PATH', [getenv('LD_LIBRARY_PATH') ';path to daetools/solibs directory']);
% GNU/Linux
setenv('LD_LIBRARY_PATH', [getenv('LD_LIBRARY_PATH') ':path to daetools/solibs directory']);
Compilation from `Matlab` (for python 2.7):
.. code-block:: bash
cd mex
mex -v -I../simulation_loader -lcdaeSimulationLoader-py27 daetools_mex.c
Compilation from `GNU Octave` (for python 2.7):
.. code-block:: bash
cd mex
mkoctfile -v --mex -I../simulation_loader -lcdaeSimulationLoader-py27 daetools_mex.c
Compilation from `Scilab` (for python 2.7):
.. code-block:: bash
cd mex
# check the include flag: cflags = -I... and set the correct full path for simulation loader
exec('builder.sce')
exec('loader.sce')
Now the compiled `daetools_mex` executable can be used to run **DAE Tools** simulations from `Matlab`:
.. code-block:: bash
res = daetools_mex('.../daetools/examples/tutorial_adv_3.py', 'create_simulation', ' ', 100.0, 10.0)
`daetools_mex` accepts the following arguments:
1. Path to the python file with daetools simulation (char array)
2. The name of python callable object that returns an *initialized* daeSimulation object (char array)
3. Arguments for the above callable object; can be anything that python accepts (char array)
4. Time horizon (double scalar)
5. Reporting interval (double scalar)
The outputs from the `daetools_mex` MEX-function are:
1. Cell array (pairs: {'variable_name', double matrix}).
The variables values are put into the caller's workspace as well.
Simulink S-functions
--------------------
Again, in order to simulate **DAE Tools** models from Simulink the wrapper code first needs to be compiled from source.
The wrapper code is located in the `daetools/trunk/mex` directory. The compilation procedure requires
a compiled `cdaeSimulationLoader-py[Major][(Minor]` library (which is a part of **DAE Tools** installation) located in the
`daetools/solibs/Platform_Architecture` directory (i.e. `daetools/solibs/Windows_win32`). That directory has to be
made available to the mex compiler and Matlab during runtime as explained in the :ref:`MEX_functions` section.
Compilation from Simulink (for python 2.7):
.. code-block:: bash
cd mex
mex -v -I../simulation_loader -lcdaeSimulationLoader-py27 daetools_s.c
Running `deatools_s` S-functions:
- Add a new S-Function ('system') from the User-Defined Functions palette.
- Set its dialog box parameters:
- S-Function name: daetools_s
(this is a compiled daetools_s.c file, resulting in, for instance, deatools_s.mexa64 binary)
- S-Function parameters: see the description below
example: '.../daetools/examples/tutorial_adv_3.py', 'create_simulation', ' ', 2, 2
- S-Function modules: leave blank
As a working example, the file `test_s_function.mdl` in `daetools/trunk/mex` directory can be used.
`deatools_s` S-function parameters:
1. Path to the python file with daetools simulation (char array)
2. The name of python callable object that returns *initialized* daeSimulation object (char array)
3. Arguments for the above callable object; can be anything that python accepts (char array)
4. Number of input ports (integer, must match the number of inlet ports in daetools simulation)
5. Number of output ports (integer, must match the number of outlet ports in daetools simulation)
More details can be found in :ref:`tutorial_adv_3`.
Performing sensitivity analysis
===============================
Sensitivity analysis (SA) is the study of how the uncertainty in the output of a mathematical model or system
(numerical or otherwise) can be apportioned to different sources of uncertainty in its inputs [#Saltelli2008]_.
Sensitivity analysis is conducted to [#Saltelli2008]_ [#Panell1997]_:
1. Identify the most important parameters (those that contribute the most to output variability)
2. Identify insignificant parameters (can be eliminated from the model)
3. Determine if and which parameters interact with each other
4. Simplify the model (by fixing model inputs that have no effect on the output)
5. Test the robustness of a model in the presence of uncertainty
6. Detect errors in the model (by encountering unexpected relationships between inputs and outputs)
7. Reduce uncertainty through the identification of model inputs that cause significant uncertainty in the output
8. Determine the optimal regions within the parameters space (for use in optimisation studies)
There is a large number of SA methods, but in general they can be grouped into the local and global methods.
The local methods involve calculation of the partial derivatives of the output with respect to an input factor.
The most important local (derivative-based) methods are:
- Forward sensitivity method
- Adjoint sensitivity method
The global methods can be grouped into:
- The screening methods (coarse sorting of the most influential inputs among a large number,
such as Morris Elementary Effects method)
- The measures of importance (quantitative sensitivity indices)
- The variance-based methods for deep exploration of the model behaviour (measuring the effects of inputs
on their all variation range, such as FAST, Sobol)
Other methods include *One-at-a-time* (changing one-factor-at-a-time to determine the effect on the output),
*Regression analysis* and *Scatter plots* (scatter plots of the output variable against individual input variables,
after sampling the model over its input distributions).
**DAE Tools** support both local and global sensitivity analysis methods. The local derivative-based method
utilises Sundials IDAS sensitivity analysis capabilities to determine the sensitivity of the results
with respect to the model parameters. At the moment, only the forward sensitivity method is available.
The global SA can be performed using the external libraries (i.e. `SALib `_).
Local (derivative-based) SA methods
-----------------------------------
To enable integration of sensitivity equations the function
:py:meth:`~pyActivity.daeSimulation.Initialize` must be called with the `calculateSensitivities`
argument set to true:
.. code-block:: python
simulation.Initialize(daesolver, datareporter, log, calculateSensitivities = True)
and the model parameters specified in the :py:meth:`~pyActivity.daeSimulation.SetUpSensitivityAnalysis`
function using the :py:meth:`~pyActivity.daeSimulation.SetSensitivityParameter` method:
.. code-block:: python
def SetUpSensitivityAnalysis(self):
self.SetSensitivityParameter(variable_1)
...
self.SetSensitivityParameter(variable_n)
.. topic:: Nota bene
The sensitivity parameters must be variables with the assigned value (degrees of freedom)!
Sensitivities can be reported to a data reporter like any ordinary variable by setting the boolean property
:py:attr:`~pyActivity.daeSimulation.ReportSensitivities` to True. In this case, the sensitivities for the
variable `var` per parameter `param` are reported as `sensitivities.d(var)_d(param)`.
.. figure:: _static/SensitivitiesInDataReporter.png
:width: 400 pt
:align: center
In addition, they can be obtained directly from the DAE solver after every call to
:py:meth:`~pyActivity.daeSimulation.Integrate` functions using the :py:attr:`~pyIDAS.daeIDAS.SensitivityMatrix` property.
This property returns a dense matrix as a :py:class:`~pyIDAS.daeIDAS.daeDenseMatrix` object.
The numpy array object can be obtained from the :py:class:`~pyIDAS.daeIDAS.daeDenseMatrix` using the
:py:attr:`~pyIDAS.daeIDAS.daeDenseMatrix.npyValues` property.
More details on local sensitivity analysis methods can be found in :ref:`tutorial_sa_1`, :ref:`tutorial_sa_2` and
:ref:`tutorial_che_9`.
Global SA methods
-----------------
Typically, the global sensitivity analysis is conducted by [#Saltelli2008]_ [#Saltelli2005]_:
1. Defining the model and its input parameters and output variables
2. Assigning probability density functions to each input parameter
3. Generating an input matrix through an appropriate random sampling method, evaluating the output
4. Assessing the influences or relative importance of each input parameter on the output variable
An example of the global sensitivity analysis in **DAE Tools** is given in :ref:`tutorial_sa_3`.
This tutorial illustrates the global variance-based sensitivity analysis methods available in
`SALib `_ python library. Three SA methods were applied on a thermal analysis
of a batch reactor with exothermic reaction :math:`A \rightarrow B` [#Saltelli2005]_: `Morris` (Elementary Effect method),
`FAST` and `Sobol` (Variance-based methods).
In **DAE Tools** the procedure includes the following steps:
1. Selection of the global sensitivity method
2. Definition of the model inputs:
.. code-block:: python
SA_problem = {
'num_vars': 5,
'names': ['B', 'gamma', 'psi', 'theta_a', 'theta_0'],
'bounds': [[10, 30], # B
[15, 25], # gamma
[0.4, 0.6], # psi
[-0.2, 0.2], # theta_a
[-0.2, 0.2] # theta_0
]
}
3. Generation of samples:
.. code-block:: python
from SALib.sample.saltelli import sample
# Generate samples using a Saltelli's extension of the Sobol sequence.
# Sample size n=512, no. params k=5 => N=(2k+2)*n=6144 (as in the referenced article).
param_values = sample(problem, 512, calc_second_order=True)
4. Generation of outputs for a given input matrix (by repeated simulations of a **DAE Tools** model):
.. code-block:: python
# theta_max is the analysed output from simulations
# The function simulate() performs daetools simulation for a given set of input parameters
theta_max = numpy.zeros(N)
for i in range(N):
theta_max[i] = simulate(run_no = i,
n = 1,
B = B[i],
gamma = gamma[i],
psi = psi[i],
theta_a = theta_a[i],
x_0 = 0.0,
theta_0 = theta_0[i])
Calculations can also be performed in parallel:
.. code-block:: python
from multiprocessing import Pool
# Create a pool of workers to calculate N outputs
# Don't forget to disable OpenMP for evaluation of residuals and derivatives!!
pool = Pool()
args = [(i, 1, B[i], gamma[i], psi[i], theta_a[i], 0.0, theta_0[i]) for i in range(N)]
theta_max[:] = pool.map(simulate_p, args, chunksize=1)
Whether the simulations will be performed in parallel depends on model complexity and size.
Running several large simulations that require a lot of memory at the same time may actually slow down the overall progress.
Those cases will benefit more from parallel evaluation of equations / use of multithreaded linear equations solvers.
5. Performing sensitivity analysis
.. code-block:: python
from SALib.analyze.sobol import analyze
res = analyze(problem, theta_max, print_to_console=False)
# 1st-order variance-based sensitivities and the confidence intervals
# (individual parameters contributions)
S1 = res['S1']
S1_conf = res['S1_conf']
# 2nd-order variance-based sensitivities and the confidence intervals
# (interactions between parameters)
S2 = res['S2']
S2_conf = res['S2_conf']
# Total sensitivity indices and the confidence intervals
ST = res['ST']
ST_conf = res['ST_conf']
1st order and total sensitivity indices (for the Sobol method):
.. code-block:: none
-------------------------------------------------------
Param S1 S1_conf ST ST_conf
-------------------------------------------------------
B 0.094110 0.089475 0.581946 0.150334
gamma -0.002416 0.011938 0.044354 0.028461
psi 0.171040 0.097859 0.524576 0.140252
theta_a 0.072511 0.043878 0.523382 0.177241
theta_0 0.002343 0.004746 0.008174 0.007650
2nd order sensitivities (for the Sobol method):
.. code-block:: none
-------------------------------------------------------
Parameter pairs S2 S2_conf
-------------------------------------------------------
B/gamma 0.180434 0.153318
B/psi 0.260698 0.172012
B/theta_a 0.143292 0.145452
B/theta_0 0.177137 0.150218
gamma/psi 0.000981 0.024855
gamma/theta_a 0.004953 0.040380
gamma/theta_0 -0.009390 0.027726
psi/theta_a 0.166102 0.173568
psi/theta_0 -0.016474 0.132210
theta_a/theta_0 0.109086 0.112104
6. Generation of scatter plots (using :py:meth:`matplotlib.pyplot.scatter` function):
.. figure:: _static/tutorial_sa_3-scatter_sobol.png
:width: 600 pt
:figwidth: 620 pt
:align: center
.. rubric:: Footnotes
.. [#Saltelli2008] A. Saltelli et al. Global sensitivity analysis. The Primer.
Wiley-Interscience (2008).
`ISBN-10: 0470059974 `_
.. [#Panell1997] D.J. Pannell. Sensitivity Analysis of Normative Economic Models: Theoretical Framework and Practical Strategies.
Agricultural Economics 1997; 16:139–152.
`doi:10.1016/S0169-5150(96)01217-0 `_
.. [#Saltelli2005] A. Saltelli, M. Ratto, S. Tarantola, F. Campolongo.
Sensitivity Analysis for Chemical Models. Chem. Rev. (2005), 105(7):2811-2828.
`doi:10.1021/cr040659d `_
Executing optimisations
=======================
The goal of mathematical optimisation is to select a best element (with regard to some criterion) from some
set of available alternatives [#optimisation]_.
The following types of optimisation problems are supported in **DAE Tools**:
- Nonlinear optimisation problems
- Mixed-integer nonlinear programming
- Constrained and unconstrained problems
- Continuous and discrete problems
Optimisation setup
------------------
In general, the optimisation activities use the same model specification and the same simulation setup
as in the simulation runs.
However, some additional information are required:
1. The objective function
2. Optimisation variables
3. Optimisation constraints
These information are specified in the :py:meth:`~pyActivity.daeSimulation.SetUpOptimization` function.
Specifying the objective function
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
By default, a single objective function object is declared and the objective function can be accessed
using the :py:attr:`~pyActivity.daeSimulation.ObjectiveFunction` property.
Its residual can be set as in ordinary equations.
It is assumed that the optimisation solver tries to perform a minimisation.
If a maximisation is required the objective function should be specified as :math:`-F_{obj}`.
.. code-block:: python
def SetUpOptimization(self):
# x1, x2 and x3 are optimisation variables (assigned variables, that is degrees of freedom).
# The ObjectiveFunction object is automatically created by the framework
# and only its residual needs to be specified.
self.ObjectiveFunction.Residual = self.m.x1() + self.m.x2() + self.m.x3()
Scaling of the objective function can be left to be done by optimisation solvers or set manually.
The default scaling is 1.0 and can be changed using the :py:attr:`~pyCore.daeObjectiveFunction.Scaling` property.
In addition, the objective function absolute tolerance can be specified using the
:py:attr:`~pyCore.daeObjectiveFunction.AbsTolerance` property.
Specifying optimisation variables
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
There are three types of optimisation variables in **DAE Tools**:
1. Continuous (specified using the function :py:meth:`~pyActivity.daeSimulation.SetContinuousOptimizationVariable`)
2. Integer (specified using the function :py:meth:`~pyActivity.daeSimulation.SetIntegerOptimizationVariable`)
3. Binary (value 0 or 1) (specified using the function :py:meth:`~pyActivity.daeSimulation.SetBinaryOptimizationVariable`)
.. code-block:: python
def SetUpOptimization(self):
# x1, x2 and x3 are optimisation variables (assigned variables, that is degrees of freedom).
# Continuous optimisation variable: (lower bound, upper bound and the starting point as floats)
self.ov1 = self.SetContinuousOptimizationVariable(self.m.x1, 0.0, 10.0, 1.5);
# Integer optimisation variable: (lower bound, upper bound and the starting point as integers)
self.ov2 = self.SetIntegerOptimizationVariable(self.m.x2, 1, 5, 2)
# Binary optimisation variable: (the starting point)
self.ov3 = self.SetBinaryOptimizationVariable(self.m.x3, 0)
Specifying optimisation constraints
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
There are three types of optimisation constraints in **DAE Tools**:
1. Inequality (specified using the function :py:meth:`~pyActivity.daeSimulation.CreateInequalityConstraint`)
2. Equality (specified using the function :py:meth:`~pyActivity.daeSimulation.CreateEqualityConstraint`)
Constraints in **DAE Tools** are similar to ordinary equations.
.. code-block:: python
def SetUpOptimization(self):
# x1, x2 and x3 are optimisation variables (assigned variables, that is degrees of freedom).
# Inequality constraint: g(i) <= 0)
# The constraint: x1 >= 25 in daetools becomes: 25 - x1 <= 0
self.c1 = self.CreateInequalityConstraint("Constraint 1")
self.c1.Residual = 25 - self.m.x1()
# Equality constraint: h(i) = 0
# The constraint: x2 + x3 = 10 in daetools becomes: x2 + x3 - 10 = 0
self.c2 = self.CreateEqualityConstraint("Constraint 2")
self.c2.Residual = self.m.x1() + self.m.x2() - 10
Scaling of constraints can be left to be done by optimisation solvers or set manually.
The default scaling is 1.0 and can be changed using the :py:attr:`~pyCore.daeOptimizationConstraint.Scaling` property.
In addition, the absolute tolerance for constraints can be specified using the
:py:attr:`~pyCore.daeOptimizationConstraint.AbsTolerance` property.
Optimisation Solvers
--------------------
The following optimisation solvers are interfaced `BONMIN `_,
`IPOPT `_,
and `NLOPT `_ :
- IPOPT NLP solver:
:py:class:`~daetools.solvers.ipopt.pyIPOPT` class from :py:mod:`daetools.solvers.ipopt` module.
- BONMIN MINLP solver:
:py:class:`~daetools.solvers.bonmin.pyBONMIN` class from :py:mod:`daetools.solvers.bonmin` module.
- NLOPT set of local/global optimisation solvers:
:py:class:`~daetools.solvers.nlopt.pyNLOPT` class from :py:mod:`daetools.solvers.nlopt` module.
Solvers can be imported in the following way:
.. code-block:: python
# Import IPOPT NLP solver:
from daetools.solvers.ipopt import pyIPOPT
nlpsolver = pyIPOPT.daeIPOPT()
# Import BONMIN MINLP solver:
from daetools.solvers.bonmin import pyBONMIN
nlpsolver = pyBONMIN.daeBONMIN()
# Import NLOPT set of optimisation solvers:
from daetools.solvers.nlopt import pyNLOPT
nlpsolver = pyNLOPT.daeNLOPT(algorithm)
# The algorithm argument can be one of:
# 'NLOPT_GN_DIRECT_L_RAND_NOSCAL','NLOPT_GN_ORIG_DIRECT','NLOPT_GN_ORIG_DIRECT_L','NLOPT_GD_STOGO','NLOPT_GD_STOGO_RAND',
# 'NLOPT_LD_LBFGS_NOCEDAL','NLOPT_LD_LBFGS','NLOPT_LN_PRAXIS','NLOPT_LD_VAR1','NLOPT_LD_VAR2','NLOPT_LD_TNEWTON',
# 'NLOPT_LD_TNEWTON_RESTART','NLOPT_LD_TNEWTON_PRECOND','NLOPT_LD_TNEWTON_PRECOND_RESTART','NLOPT_GN_CRS2_LM',
# 'NLOPT_GN_MLSL','NLOPT_GD_MLSL','NLOPT_GN_MLSL_LDS','NLOPT_GD_MLSL_LDS','NLOPT_LD_MMA','NLOPT_LN_COBYLA',
# 'NLOPT_LN_NEWUOA','NLOPT_LN_NEWUOA_BOUND','NLOPT_LN_NELDERMEAD','NLOPT_LN_SBPLX','NLOPT_LN_AUGLAG','NLOPT_LD_AUGLAG',
# 'NLOPT_LN_AUGLAG_EQ','NLOPT_LD_AUGLAG_EQ','NLOPT_LN_BOBYQA','NLOPT_GN_ISRES',
# 'NLOPT_AUGLAG','NLOPT_AUGLAG_EQ','NLOPT_G_MLSL','NLOPT_G_MLSL_LDS','NLOPT_LD_SLSQP'
Running an optimisation
-----------------------
Optimisations are run in a very similar fashion as simulations. The only additional information required
are the :py:class:`~pyActivity.daeOptimization` and the NLP/MINLP solver objects (depending on the problem type):
.. code-block:: python
# Create Log, NLPSolver, DAESolver, DataReporter, Simulation and Optimization objects
log = daePythonStdOutLog()
daesolver = daeIDAS()
nlpsolver = daeIPOPT()
datareporter = daeTCPIPDataReporter()
simulation = mySimulation()
optimization = daeOptimization()
# Enable reporting of all variables
simulation.m.SetReportingOn(True)
# Set the time horizon and the reporting interval
simulation.ReportingInterval = ...
simulation.TimeHorizon = ...
# Connect data reporter
simName = simulation.m.Name + strftime(" [m.%Y %H:%M:%S]", localtime())
if(datareporter.Connect("", simName) == False):
sys.exit()
# Initialise the optimisation
optimization.Initialize(simulation, nlpsolver, daesolver, datareporter, log)
# Run
optimization.Run()
# Clean up
optimization.Finalize()
Optimisations can also be executed in a simple way using the static daeActivity.optimize function.
The function uses the default objects for all missing data:
.. code-block:: python
def run(**kwargs):
simulation = simTutorial()
nlpsolver = pyIPOPT.daeIPOPT()
return daeActivity.optimize(simulation, reportingInterval = 1,
timeHorizon = 1,
nlpsolver = nlpsolver,
nlpsolver_setoptions_fn = setOptions,
reportSensitivities = True,
**kwargs)
.. rubric:: Footnotes
.. [#optimisation] `Mathematical optimization `_
..
Executing Parameter Estimations
===============================
Thermo-physical Property Packages
================================