
DAE Tools Modelling, Simulation and Optimisation Software

Dragan D. Nikolić
http://daetools.sourceforge.io

DAE Tools Project, Belgrade, Serbia

Introduction

Many engineering problems can be described by a system of non-linear (partial-)differential and
algebraic equations. Different modelling approaches can be applied to their solution[Morton] such as:
(a) sequential modular, (b) simultaneous modular, and (c) equation-based (acausal). One of the
methods to solve this type of problems is by using the equation-based approach. In the equation-
based approach, all equations and variables which constitute the model representing the process
are generated and gathered together. Then, equations are solved simultaneously using a suitable
mathematical algorithm. Equations are given in an implicit form as functions of state variables and
their derivatives, degrees of freedom (the system variables that may vary independently), and
parameters.

This class of problems is found in the process, chemical, petrochemical, pharmaceutical and other
engineering areas, natural sciences and financial systems. They are employed for tasks such as:
simulation, optimisation, parameter estimation, sensitivity analysis, model predictive and optimal
control, and supply chain optimisation.

In general, simulation programs for this class of problems are developed using:

 General-purpose programming languages such as C, C++ and Fortran and one of available
suites for scientific applications such as SUNDIALS[Sundials], Trilinos[Trilinos] and PETSc[PETSc].

 Domain-specific and modelling languages such as Modelica[Modelica,Jmodelica,OpenModelica],
Ascend[Ascend], gPROMS[gPROMS], GAMS[Gams], Dymola[Dymola] and APMonitor[APMonitor].

 Higher level fourth-generation languages such as Python and modelling software such as
Assimulo[Assimulo].

 Multi-paradigm numerical languages: Matlab and Simulink[Matlab], Mathematica[Mathematica],
Maple[Maple] and Scilab[Scilab].

 Computer Aided Engineering (CAE) software such as Aspen Plus[Aspen], EMSO Simulator[EMSO]

and DESIGN II for Windows[WinSim].

The lower-level general purpose languages are also often used for the development of the efficient,
tailor-made software (i.e. large-scale finite difference and finite element solvers) targeting one of
the available high-performance computing architectures such as General Purpose Graphics
Processing Units (GPGPU) and FieldProgrammable Gate Arrays (FPGA). Domain Specific Languages
(DSL) are special-purpose programming or specification languages dedicated to a particular
problem domain and directly support the key concepts necessary to describe the underlying

Page 1 of 7

DAE Tools Modelling, Simulation and Optimisation Software

problems. They are created specifically to solve problems in a particular domain and usually not
intended to be able to solve problems outside it (although that may be technically possible in some
cases). More versatile, multi-domain modelling languages (such as Modelica or gPROMS) are
capable of solving problems in different application domains. Despite their versatility, modelling
languages commonly lack or have a limited access to the operating system, third-party numerical
libraries and other capabilities that characterise full-featured programming languages, scripting or
otherwise. In contrast, general-purpose languages are created to solve problems in a wide variety
of application domains, do not support concepts from any domain, and have a direct access to the
operating system, low-level functions and third-party libraries. Higher level and multi-paradigm
numerical languages provide an Application Programming Interface (API) to assist in the process of
model specification and execution of different tasks (i.e. simulation, optimisation and parameter
estimation). CAE software offer a great degree of generality: all required tasks are performed
(mostly) automatically through the graphical user interface.

The most important tasks required to solve a typical simulation or optimisation problem include:
the model specification, the simulation setup, the simulation execution, the numerical solution of
the system of algebraic/differential equations, and the processing of the results. Each task may
require a call or a chained sequence of calls to other software libraries, the methods in those
libraries must be available to be called with no significant additional pre-processing and must be
able to operate on shared/common data structures. All of these require a two-way interoperability
between the software and third-party libraries. Also, the model structure is often not fully defined
beforehand and a runtime generation of models (“on-the-fly”) using the results from other software
is required. Frequently, simulations can not be limited to a straightforward, step-wise integration in
time but the custom user-defined schedules are required, which can be performed only using the
fully-featured programming languages. In addition, it is often desired to compare/benchmark the
simulation results between different simulators. This requires the code-generation and the model-
exchange capabilities to automatically generate the source code for the target language or export
the model definition to a specified (often simulator-independent) model specification language.
Exposing the functionality of the developed models to another simulator through a predefined
standard interface such as the CAPE-OPEN (http://www.colan.org) and Functional Mock-up
Interface (FMI, http://www.fmi-standard.org) is another common functionality.

In general, a typical equation-based model consists of a coupled set of partial-differential equations
and auxiliary algebraic and ordinary differential equations. Models are typically multi-scale (from
the molecular to the overall plant level) and must be described by mixed/multiple coupled Finite
Element/Finite Volume/Finite Difference equations with additional ordinary differential and
algebraic equations. Such mixed non-linear systems of equations are difficult to model using
libraries and Computer Aided Engineering software for finite element analysis and computational
fluid dynamics.

A modelling language implemented as a single monolithic software package can rarely deliver all
capabilities required. For instance, the Modelica modelling language allows calls to “C” functions
from external shared libraries but with some additional pre-processing. Simple schedules are
supported directly by the language but they must be embedded into a model, rather than separated
into an independent section or function. gPROMS also allows very simple schedules to be defined as

Page 2 of 7

Dragan D. Nikolić

tasks (only in simulation mode), and user-defined output channels for custom processing of the
results. The runtime model generation and complex operating procedures are not supported.
Invocation from other software is either not possible or requires an additional application layer. On
the other hand, Python, MATLAB and the software suites such as Trilinos and PETSc have an access
to an immense number of scientific software libraries, support runtime model generation,
completely flexible schedules and processing of the results. However, the procedural nature and
lack of object-oriented features in MATLAB and absence of fundamental modelling concepts in all
three types of environments make development of complex models or model hierarchies difficult.

Software description

DAE Tools is a cross-platform equation-based object-oriented modelling, simulation and
optimisation software. It is not a modelling language nor a collection of numerical libraries but
rather a higher level structure – an architectural design of interdependent software components
providing an API for:

 Model development/specification.
 Activities on developed models, such as simulation, optimisation, sensitivity analysis and

parameter estimation.
 Processing of the results, such as plotting and exporting to various file formats.
 Report generation.
 Code generation, co-simulation and model exchange.

The approach implemented in DAE Tools software offers some of the key advantages of the
modelling languages coupled with the power and flexibility of the general-purpose languages. It is a
type of hybrid approach–it is implemented using the general-purpose programming languages such
as C++ and Python, but provides the Application Programming Interface (API) that resembles a
syntax of modelling languages as much as possible and takes advantage of the higher level general
purpose languages to offer an access to the operating system, low-level functions and large number
of numerical libraries to solve various numerical problems. The combination of the features of
modelling and general purpose programming languages in the Hybrid approach provides the
following capabilities:

 Runtime model generation
 Runtime simulation set-up
 Complex schedules
 Interoperability with the third-party software
 Suitability for embedding and use as a web application or software as a service
 Code-generation, model exchange and co-simulation

Problems that can be solved are initial value problems of implicit form described by a system of
linear, non-linear, and partial-differential equations (only index-1 DAE systems, at the moment).
Systems modelled can be with lumped or distributed parameters, steady-state or dynamic, and
continuous with some elements of event-driven systems such as discontinuous equations, state

Page 3 of 7

DAE Tools Modelling, Simulation and Optimisation Software

transition networks and discrete events. Automatic differentiation is supported through the
operator overloading technique using the modified ADOL-C library [@ADOL-C].

Multiple activities can be performed on models developed in DAE Tools such as:

 Simulation (steady-state or dynamic, with simple or complex schedules).
 Sensitivity analysis (local or global methods).
 Optimisation (NLP and MINLP problems).
 Parameter estimation.
 Generation of model reports (in XML + MathML/LaTex format).
 Code generation for other modelling or general-purpose programming languages.
 Simulation in other simulators using standard co-simulation interfaces.
 Export of the simulation results to various file formats.

Main capabilities

DAE Tools is free software released under the GNU General Public Licence. Models can be
developed in Python or C++. All DAE Tools libraries are written in standard ANSI/ISO C++. The code
is therefore portable across different platforms, and currently runs on all major operating systems
such as GNU/Linux, MacOS and Windows.

A large number of numerical solvers is supported. Currently, Sundials IDAS variable-order, variable
coefficient BDF solver is used to solve DAE systems and calculate sensitivities. IPOPT[IPOPT],
BONMIN[BONMIN], and NLopt[NLopt] solvers are employed to solve (mixed integer) non-linear
programming problems, and a range of direct/iterative and sequential/multi-threaded sparse
matrix linear solvers is interfaced such as SuperLU/SuperLU_MT[SuperLU], PARDISO[PARDISO], Intel
PARDISO, and Trilinos Amesos/AztecOO[Amesos].

The hybrid approach allows an easy interaction with other software packages/libraries. First, other
numerical libraries can be accessed directly from the code, and since the Python’s design allows an
easy development of extension modules from different languages, a vast number of numerical
libraries is readily available. Second, DAE Tools are developed with a built-in support for NumPy
(http://numpy.scipy.org) numerical package; therefore, DAE Tools objects can be used as native
NumPy data types and numerical functions from other extension modules can directly operate on
them. This way, a large pool of advanced and massively tested numerical algorithms is made
directly available to DAE Tools.

Parallel computation is supported using the shared-memory parallel programming model at the
moment. The following parts of the code support parallelisation: evaluation of equations,
derivatives (Jacobian matrix or preconditioner) and sensitivity residuals using the OpenMP API or
the OpenCL framework, assembly of Finite Element systems using the OpenMP API and solution of
systems of linear equations.

Multiphysics capabilities Multiple simultaneous physical phenomena can be modelled using the
finite difference, finite volume and finite element methods. DAE Tools utilise deal.II library to

Page 4 of 7

Dragan D. Nikolić

generate a set of differential equations for given inputs such as the mesh, the Finite Element space,
the weak form of the problem and the boundary conditions. Several non-linear FE systems can be
generated in the same model, they can be mixed with the other equations in the model, DAE Tools
variables can be used to set boundary conditions, evaluate source terms and non-linear coefficients,
impose constraints and add any number of auxiliary equations.

DAE Tools support local (derivative-based) and global sensitivity analysis (using SALib library).
The global sensitivity analysis allows computation of the 1st and 2nd order sensitivities and
confidence intervals, total sensitivity indices and confidence intervals and scatter plots. Three
methods are available: method of Morris (elementary effect method) and variance-based FAST and
Sobol methods. Simulations for a large number of samples are performed in parallel using the
Python multiprocessing.Pool library.

DAE Tools also provide code generators and co-simulation/model exchange standards/interfaces
for other simulators. This way, the developed models can be simulated in other simulators either by
generating the source code, exporting a model specification file or through some of the standard co-
simulation interfaces. To date, the source code generators for Modelica, gPROMS and OpenCS
languages/frameworks have been developed. In addition, DAE Tools functionality can be exposed
to MATLAB, Scilab and GNU Octave via MEX-functions, to Simulink via user-defined S-functions and
to the simulators that support Functional Mock-up Interface (FMI) co-simulation capabilities.

DAE Tools can be run as a software as a service. Web services with the RESTful API are available for
DAE Tools simulations and for FMI exported objects. The RESTful API is language independent and
simulations can be executed using languages such as JavaScript, Python, C++ and many others. DAE
Tools allow development of application servers or exposing individual simulations as a web service
with an attractive Graphical User Interface.

The quality of the software is a very important aspect and the formal code verification techniques
(such as the Method of Exact Solutions and the Method of Manufactured Solutions) and the most
rigorous acceptance criteria (such as the order-of-accuracy) are applied to test almost all aspects of
the software.

DAE Tools architecture and implementation details are presented in Nikolić[daetools].

Page 5 of 7

DAE Tools Modelling, Simulation and Optimisation Software

References

[ADOL-C]: Walther A, Griewank A. 2012. Getting started with ADOL-C. Boca Raton: Chapman-Hall
CRC Computational Science, 181–202. DOI 10.1201/b11644-8.

[Amesos]: Sala M, Stanley K, Heroux M. 2006. Amesos: a set of general interfaces to sparse direct
solver libraries. In: Proceedings of PARA’06 Conference, Umea, Sweden. Available at
https://www.researchgate.net/publication/220840090_Amesos_A_Set_of_General_Interfaces_to_Sp
arse_Direct_Solver_Libraries.

[APMonitor]: Hedengren JD, Shishavan RA, Powell KM, Edgar TF. 2014. Nonlinear modeling,
estimation and predictive control in APmonitor. Computers & Chemical Engineering 70:133–148
(Manfred Morari Special Issue). DOI 10.1016/j.compchemeng.2014.04.013.

[ASCEND]: Piela PC, Epperly TG, Westerberg KM, Westerberg AW. 1991. ASCEND: an object-
oriented computer environment for modeling and analysis: the modeling language. Computers &
Chemical Engineering 15(1):53–72. DOI 10.1016/0098-1354(91)87006-U.

[Assimulo]: Andersson C, Fuhrer C, Akesson J. 2015. Assimulo: a unified framework for ODE solvers.
Mathematics and Computers in Simulation 116:26–43. DOI 10.1016/j.matcom.2015.04.007.

[Aspen]: Aspen Technology, Inc., 2022. Aspen Plus. Available at https://www.aspentech.com.

[BONMIN]: Bonami P, Biegler LT, Conn AR, Cornue´jols G, Grossmann IE, Laird CD, Lee J, Lodi A,
Margot F, Sawaya N, Wachter A. 2008. An algorithmic framework for convex mixed integer
nonlinear programs. Discrete Optimization 5(2):186–204. DOI 10.1016/j.disopt.2006.10.011.

[daetools]: D. D. Nikolić, DAE Tools: Equation-based object-oriented modelling, simulation and
optimisation software, PeerJ Computer Science, 2 (2016). https://doi.org/10.7717/peerj-cs.54.

[Dymola]: Elmqvist H. 1978. A Structured Model Language for Large Continuous Systems.
Ph.D. thesis. Lund: Department of Automatic Control, Lund University.

[EMSO]: the ALSOC Project, 2022. EMSO simulator. Available at
http://www.enq.ufrgs.br/trac/alsoc/wiki/EMSO

[GAMS]: Brook A, Kendrick D, Meeraus A. 1988. GAMS, a User’s Guide. SIGNUM Newsletter 23(3–
4):10–11. DOI 10.1145/58859.58863.

[gPROMS]: Barton PI, Pantelides CC. 1994. Modeling of combined discrete/continuous processes.
AIChE Journal 40(6):966–979. DOI 10.1002/aic.690400608.

[IPOPT]: Wachter A, Biegler LT. 2006. On the implementation of an interior-point filter line-search
algorithm for large-scale nonlinear programming. Mathematical Programming 106(1):25–57. DOI
10.1007/s10107-004-0559-y.

[JModelica]: Akesson J, Arzen K-E, Gafvert M, Bergdahl T, Tummescheit H. 2010. Modeling and
optimization with Optimica and JModelica.org–languages and tools for solving large-scale dynamic
optimization problems. Computers & Chemical Engineering 34(11):1737–1749. DOI
10.1016/j.compchemeng.2009.11.011.

Page 6 of 7

Dragan D. Nikolić

[Maple]: Waterloo Maple, Inc. 2015. Maple. Waterloo: Waterloo Maple, Inc. Available at
http://www.maplesoft.com/products/maple/.

[Mathematica]: Wolfram Research, Inc. 2015. Mathematica. Version 10.1. Champaign: Wolfram
ResearchInc. Available at https://www.wolfram.com/mathematica.

[Matlab]: MathWorks, Inc. 2015. MATLAB. Matlab 8.5 (R2015a). Natick: MathWorks. Available at
https://mathworks.com/products/matlab.

[Modelica]: Fritzson P, Engelson V. 1998. Modelica—a unified object-oriented language for system
modeling and simulation. In: Jul E, ed. ECOOP’98—Object-Oriented Programming, Volume 1445 of
Lecture Notes in Computer Science. Berlin Heidelberg: Springer, 67–90.

[Morton]: Morton W. 2003. Equation-oriented simulation and optimization. In: Proceedings of the
National Academy of Sciences of India, Section A: Physical Sciences. New Delhi: Springer India
3:317–357. Available at
http://www.dli.gov.in/data_copy/upload/INSA/INSA_1/2000c4d6_317.pdf.

[NLopt]: Johnson SG. 2015. The NLopt nonlinear-optimization package. Version 2.4.2. Available at
http://ab-initio.mit.edu/wiki/index.php/NLopt.

[OpenModelica]: Fritzson P, Aronsson P, Lundvall H, Nystrom K, Pop A, Saldamli L, Broman D. 2005.
The openmodelica modeling, simulation, and development environment. In: 46th Conference on
Simulation and Modelling of the Scandinavian Simulation Society (SIMS2005), Trondheim, Norway,
October 13–14, 2005. Oulu: SIMS–Scandinavian Simulation Society.

[Pardiso]: Schenk O, Wa¨chter A, Hagemann M. 2007. Matching-based preprocessing algorithms to
the solution of saddle-point problems in large-scale nonconvex interior-point optimization.
Computational Optimization and Applications 36(2):321–341. DOI 10.1007/s10589-006-9003-y.

[PETSc]: Balay S, Abhyankar S, Adams MF, Brown J, Brune P, Buschelman K, Dalcin L, Eijkhout V,
Gropp WD, Kaushik D, Knepley MG, McInnes LC, Rupp K, Smith BF, Zampini S, Zhang H. 2015. PETSc
users manual. Techical Report ANL-95/11–Revision 3.6, Argonne National Laboratory. Available at
http://www.mcs.anl.gov/petsc/petsc-current/docs/manual.pdf.

[Scilab]: Scilab Enterprises. 2015. Scilab: free and open source software. Version 5.5.2. Versailles:
Scilab Enterprises. Available at http://www.scilab.org.

[Sundials]: Hindmarsh AC, Brown PN, Grant KE, Lee SL, Serban R, Shumaker DE, Woodward CS.
2005. SUNDIALS: suite of nonlinear and differential/algebraic equation solvers. ACM Transactions
on Mathematical Software 31(3):363–396. DOI 10.1145/1089014.1089020.

[SuperLU]: Li XS. 2005. An overview of SuperLU: algorithms, implementation, and user interface.
ACM Transactions on Mathematical Software 31(3):302–325 DOI 10.1145/1089014.1089017.

[Trilinos]: Heroux, M. A., Bartlett, R. A., Howle, V. E., Hoekstra, R. J., Hu, J. J., Kolda, T. G., Lehoucq, R.
B., Long, K. R., Pawlowski, R. P., Phipps, E. T., Salinger, A. G., Thornquist, H. K., Tuminaro, R. S.,
Willenbring, J. M., Williams, A., & Stanley, K. S. (2005). An overview of the Trilinos project. ACM
Trans. Math. Softw., 31(3), 397–423. https://doi.org/10.1145/1089014.1089021

[WinSim]: WinSim Inc., 2022. DESIGN II for Windows. Available at https://www.winsim.com.

Page 7 of 7

	Introduction
	Software description
	Main capabilities
	References

