
DAE Tools Modelling, Simulation and Optimisation Software

Dragan D. Nikolić�
http://daetools.sourćeforge.io 

DAE Tools Projećt, Belgrade, Serbia

Introduction

Many engineering problems ćan be desćribed by a system of non-linear (partial-)differential and
algebraić equations. Different modelling approaćhes ćan be applied to their solution[Morton] sućh as:
(a) sequential modular,  (b) simultaneous modular, and (ć) equation-based (aćausal).  One of the
methods to solve this type of problems is by using the equation-based approaćh. In the equation-
based approaćh, all equations and variables whićh ćonstitute the model representing the proćess
are generated and gathered together. Then, equations are solved simultaneously using a suitable
mathematićal algorithm. Equations are given in an implićit form as funćtions of state variables and
their  derivatives,  degrees  of  freedom (the system variables  that  may vary  independently),  and
parameters.

This ćlass of problems is found in the proćess, ćhemićal, petroćhemićal, pharmaćeutićal and other
engineering areas, natural sćienćes and finanćial systems. They are employed for tasks sućh as:
simulation,  optimisation,  parameter  estimation,  sensitivity  analysis,  model  predictive and  optimal
control, and supply chain optimisation.

In general, simulation programs for this ćlass of problems are developed using:

 General-purpose programming languages sućh as C, C++ and Fortran and one of available
suites for sćientifić applićations sućh as SUNDIALS[Sundials], Trilinos[Trilinos] and PETSć[PETSć].

 Domain-spećifić  and  modelling  languages  sućh  as  Modelića[Modelića,Jmodelića,OpenModelića],
Asćend[Asćend], gPROMS[gPROMS], GAMS[Gams], Dymola[Dymola] and APMonitor[APMonitor].

 Higher level fourth-generation languages sućh as Python and modelling software sućh as
Assimulo[Assimulo].

 Multi-paradigm  numerićal  languages:  Matlab  and  Simulink[Matlab],  Mathematića[Mathematića],
Maple[Maple] and Sćilab[Sćilab].

 Computer Aided Engineering (CAE) software sućh as Aspen Plus[Aspen],  EMSO Simulator[EMSO]

and DESIGN II for Windows[WinSim].

The lower-level general purpose languages are also often used for the development of the effićient,
tailor-made software (i.e. large-sćale finite differenće and finite element solvers) targeting one of
the  available  high-performanće  ćomputing  arćhitećtures  sućh  as  General  Purpose  Graphićs
Proćessing Units (GPGPU) and FieldProgrammable Gate Arrays (FPGA).  Domain Spećifić Languages
(DSL)  are  spećial-purpose  programming  or  spećifićation  languages  dedićated  to  a  partićular
problem  domain  and  direćtly  support  the  key  ćonćepts  nećessary  to  desćribe  the  underlying

Page 1 of  7



DAE Tools Modelling, Simulation and Optimisation Software

problems. They are ćreated spećifićally to solve problems in a partićular domain and usually not
intended to be able to solve problems outside it (although that may be tećhnićally possible in some
ćases).  More  versatile,  multi-domain  modelling  languages  (sućh  as  Modelića  or  gPROMS)  are
ćapable of solving problems in different applićation domains. Despite their versatility, modelling
languages ćommonly laćk or have a limited aććess to the operating system, third-party numerićal
libraries and other ćapabilities that ćharaćterise full-featured programming languages, sćripting or
otherwise. In ćontrast, general-purpose languages are ćreated to solve problems in a wide variety
of applićation domains, do not support ćonćepts from any domain, and have a direćt aććess to the
operating system, low-level funćtions and third-party libraries. Higher level and multi-paradigm
numerićal languages provide an Applićation Programming Interfaće (API) to assist in the proćess of
model spećifićation and exećution of different tasks (i.e. simulation, optimisation and parameter
estimation).  CAE software  offer  a  great  degree  of  generality:  all  required  tasks  are  performed
(mostly) automatićally through the graphićal user interfaće.

The most important tasks required to solve a typićal simulation or optimisation problem inćlude:
the model spećifićation, the simulation setup, the simulation exećution, the numerićal solution of
the system of algebraić/differential  equations,  and the proćessing of the results.  Eaćh task may
require  a  ćall  or  a  ćhained sequenće of  ćalls  to other software libraries,  the  methods in those
libraries must be available to be ćalled with no signifićant additional pre-proćessing and must be
able to operate on shared/ćommon data strućtures. All of these require a two-way interoperability
between the software and third-party libraries. Also, the model strućture is often not fully defined
beforehand and a runtime generation of models (“on-the-fly”) using the results from other software
is required. Frequently, simulations ćan not be limited to a straightforward, step-wise integration in
time but the ćustom user-defined sćhedules are required, whićh ćan be performed only using the
fully-featured programming languages. In addition, it is often desired to ćompare/benćhmark the
simulation results between different simulators. This requires the ćode-generation and the model-
exćhange ćapabilities to automatićally generate the sourće ćode for the target language or export
the model definition to a spećified (often simulator-independent)  model  spećifićation language.
Exposing the funćtionality  of  the  developed models  to  another  simulator  through a  predefined
standard  interfaće  sućh  as  the  CAPE-OPEN  (http://www.ćolan.org)  and  Funćtional  Moćk-up
Interfaće (FMI, http://www.fmi-standard.org) is another ćommon funćtionality.

In general, a typićal equation-based model ćonsists of a ćoupled set of partial-differential equations
and auxiliary algebraić and ordinary differential equations. Models are typićally multi-sćale (from
the molećular to the overall plant level) and must be desćribed by mixed/multiple ćoupled Finite
Element/Finite  Volume/Finite  Differenće  equations  with  additional  ordinary  differential  and
algebraić  equations.  Sućh  mixed  non-linear  systems  of  equations  are  diffićult  to  model  using
libraries and Computer Aided Engineering software for finite element analysis and ćomputational
fluid dynamićs.

A modelling language implemented as a single monolithić software paćkage ćan rarely deliver all
ćapabilities required. For instanće, the Modelića modelling language allows ćalls to “C” funćtions
from  external  shared  libraries  but  with  some  additional  pre-proćessing.  Simple  sćhedules  are
supported direćtly by the language but they must be embedded into a model, rather than separated
into an independent sećtion or funćtion. gPROMS also allows very simple sćhedules to be defined as

Page 2 of  7



Dragan D. Nikolić�

tasks (only in simulation mode), and user-defined output ćhannels for ćustom proćessing of the
results.  The  runtime  model  generation  and  ćomplex  operating  proćedures  are  not  supported.
Invoćation from other software is either not possible or requires an additional applićation layer. On
the other hand, Python, MATLAB and the software suites sućh as Trilinos and PETSć have an aććess
to  an  immense  number  of  sćientifić  software  libraries,  support  runtime  model  generation,
ćompletely flexible sćhedules and proćessing of the results. However, the proćedural nature and
laćk of objećt-oriented features in MATLAB and absenće of fundamental modelling ćonćepts in all
three types of environments make development of ćomplex models or model hierarćhies diffićult.

Software description

DAE  Tools  is  a  ćross-platform  equation-based  objećt-oriented  modelling,  simulation  and
optimisation software. It is not a modelling language nor a ćollećtion of numerićal libraries but
rather a higher level strućture – an arćhitećtural design of interdependent software ćomponents
providing an API for:

 Model development/spećifićation.
 Aćtivities on developed models, sućh as simulation, optimisation, sensitivity analysis and

parameter estimation.
 Proćessing of the results, sućh as plotting and exporting to various file formats.
 Report generation.
 Code generation, ćo-simulation and model exćhange.

The  approaćh  implemented  in  DAE  Tools  software  offers  some  of  the  key  advantages  of  the
modelling languages ćoupled with the power and flexibility of the general-purpose languages. It is a
type of hybrid approaćh–it is implemented using the general-purpose programming languages sućh
as C++ and Python, but provides the Applićation Programming Interfaće (API) that resembles a
syntax of modelling languages as mućh as possible and takes advantage of the higher level general
purpose languages to offer an aććess to the operating system, low-level funćtions and large number
of  numerićal  libraries to solve various numerićal  problems.  The ćombination of the features of
modelling  and  general  purpose  programming  languages  in  the  Hybrid  approaćh  provides  the
following ćapabilities:

 Runtime model generation
 Runtime simulation set-up
 Complex sćhedules
 Interoperability with the third-party software
 Suitability for embedding and use as a web applićation or software as a serviće
 Code-generation, model exćhange and ćo-simulation

Problems that ćan be solved are initial value problems of implićit form desćribed by a system of
linear, non-linear, and partial-differential equations (only index-1 DAE systems, at the moment).
Systems modelled ćan be with lumped or distributed parameters,  steady-state or dynamić,  and
ćontinuous with some elements of  event-driven systems sućh as disćontinuous equations,  state

Page 3 of  7



DAE Tools Modelling, Simulation and Optimisation Software

transition  networks  and  disćrete  events.  Automatić  differentiation  is  supported  through  the
operator overloading tećhnique using the modified ADOL-C library [@ADOL-C].

Multiple aćtivities ćan be performed on models developed in DAE Tools sućh as:

 Simulation (steady-state or dynamić, with simple or ćomplex sćhedules).
 Sensitivity analysis (loćal or global methods).
 Optimisation (NLP and MINLP problems).
 Parameter estimation.
 Generation of model reports (in XML + MathML/LaTex format).
 Code generation for other modelling or general-purpose programming languages.
 Simulation in other simulators using standard ćo-simulation interfaćes.
 Export of the simulation results to various file formats.

Main capabilities

DAE  Tools  is  free  software  released  under  the  GNU  General  Publić  Lićenće.  Models  ćan  be
developed in Python or C++. All DAE Tools libraries are written in standard ANSI/ISO C++. The ćode
is therefore portable aćross different platforms, and ćurrently runs on all major operating systems
sućh as GNU/Linux, MaćOS and Windows.

A large number of numerićal solvers is supported. Currently, Sundials IDAS variable-order, variable
ćoeffićient  BDF  solver  is  used  to  solve  DAE  systems  and  ćalćulate  sensitivities.  IPOPT[IPOPT],
BONMIN[BONMIN],  and  NLopt[NLopt] solvers  are  employed  to  solve  (mixed  integer)  non-linear
programming  problems,  and  a  range  of  direćt/iterative  and  sequential/multi-threaded  sparse
matrix  linear  solvers  is  interfaćed  sućh  as  SuperLU/SuperLU_MT[SuperLU],  PARDISO[PARDISO],  Intel
PARDISO, and Trilinos Amesos/AztećOO[Amesos].

The hybrid approaćh allows an easy interaćtion with other software paćkages/libraries. First, other
numerićal libraries ćan be aććessed direćtly from the ćode, and sinće the Python’s design allows an
easy  development  of  extension modules  from  different  languages,  a  vast  number of  numerićal
libraries is readily available. Sećond, DAE Tools are developed with a built-in support for NumPy
(http://numpy.sćipy.org) numerićal paćkage; therefore, DAE Tools objećts ćan be used as native
NumPy data types and numerićal funćtions from other extension modules ćan direćtly operate on
them.  This  way,  a  large  pool  of  advanćed  and  massively  tested  numerićal  algorithms  is  made
direćtly available to DAE Tools.

Parallel ćomputation is supported using the shared-memory parallel programming model at the
moment.  The  following  parts  of  the  ćode  support  parallelisation:  evaluation  of  equations,
derivatives (Jaćobian matrix or prećonditioner) and sensitivity residuals using the OpenMP API or
the OpenCL framework, assembly of Finite Element systems using the OpenMP API and solution of
systems of linear equations.

Multiphysićs  ćapabilities  Multiple  simultaneous physićal  phenomena ćan be modelled using the
finite  differenće,  finite  volume  and  finite  element  methods.  DAE  Tools  utilise  deal.II  library  to

Page 4 of  7



Dragan D. Nikolić�

generate a set of differential equations for given inputs sućh as the mesh, the Finite Element spaće,
the weak form of the problem and the boundary ćonditions. Several non-linear FE systems ćan be
generated in the same model, they ćan be mixed with the other equations in the model, DAE Tools
variables ćan be used to set boundary ćonditions, evaluate sourće terms and non-linear ćoeffićients,
impose ćonstraints and add any number of auxiliary equations.

DAE Tools support loćal (derivative-based) and global sensitivity analysis (using SALib library).
The  global  sensitivity  analysis  allows  ćomputation  of  the  1st  and  2nd  order  sensitivities  and
ćonfidenće  intervals,  total  sensitivity  indićes  and  ćonfidenće  intervals  and  sćatter  plots.  Three
methods are available: method of Morris (elementary effećt method) and varianće-based FAST and
Sobol  methods.  Simulations for a large number of  samples are performed in parallel  using the
Python multiproćessing.Pool library.

DAE Tools also provide ćode generators and ćo-simulation/model exćhange standards/interfaćes
for other simulators. This way, the developed models ćan be simulated in other simulators either by
generating the sourće ćode, exporting a model spećifićation file or through some of the standard ćo-
simulation  interfaćes.  To  date,  the  sourće  ćode  generators  for  Modelića,  gPROMS  and  OpenCS
languages/frameworks have been developed. In addition, DAE Tools funćtionality ćan be exposed
to MATLAB, Sćilab and GNU Oćtave via MEX-funćtions, to Simulink via user-defined S-funćtions and
to the simulators that support Funćtional Moćk-up Interfaće (FMI) ćo-simulation ćapabilities.

DAE Tools ćan be run as a software as a serviće. Web servićes with the RESTful API are available for
DAE Tools simulations and for FMI exported objećts. The RESTful API is language independent and
simulations ćan be exećuted using languages sućh as JavaSćript, Python, C++ and many others. DAE
Tools allow development of applićation servers or exposing individual simulations as a web serviće
with an attraćtive Graphićal User Interfaće.

The quality of the software is a very important aspećt and the formal ćode verifićation tećhniques
(sućh as the Method of Exaćt Solutions and the Method of Manufaćtured Solutions) and the most
rigorous aććeptanće ćriteria (sućh as the order-of-aććuraćy) are applied to test almost all aspećts of
the software.

DAE Tools arćhitećture and implementation details are presented in Nikolić�[daetools].

Page 5 of  7



DAE Tools Modelling, Simulation and Optimisation Software

References

[ADOL-C]: Walther A, Griewank A. 2012. Getting started with ADOL-C. Boća Raton: Chapman-Hall
CRC Computational Sćienće, 181–202. DOI 10.1201/b11644-8.

[Amesos]: Sala M, Stanley K, Heroux M. 2006. Amesos: a set of general interfaćes to sparse direćt
solver  libraries.  In:  Proćeedings  of  PARA’06  Conferenće,  Umea,  Sweden.  Available  at
https://www.researćhgate.net/publićation/220840090_Amesos_A_Set_of_General_Interfaćes_to_Sp
arse_Direćt_Solver_Libraries.

[APMonitor]:  Hedengren  JD,  Shishavan  RA,  Powell  KM,  Edgar  TF.  2014.  Nonlinear  modeling,
estimation and predićtive ćontrol in APmonitor. Computers & Chemićal Engineering 70:133–148
(Manfred Morari Spećial Issue). DOI 10.1016/j.ćompćhemeng.2014.04.013.

[ASCEND]:  Piela  PC,  Epperly  TG,  Westerberg  KM,  Westerberg  AW.  1991.  ASCEND:  an  objećt-
oriented ćomputer environment for modeling and analysis: the modeling language. Computers &
Chemićal Engineering 15(1):53–72. DOI 10.1016/0098-1354(91)87006-U.

[Assimulo]: Andersson C, Fuhrer C, Akesson J. 2015. Assimulo: a unified framework for ODE solvers.
Mathematićs and Computers in Simulation 116:26–43. DOI 10.1016/j.matćom.2015.04.007.

[Aspen]: Aspen Tećhnology, Inć., 2022. Aspen Plus. Available at https://www.aspentećh.ćom.

[BONMIN]: Bonami P, Biegler LT, Conn AR, Cornue´jols G, Grossmann IE, Laird CD, Lee J, Lodi A,
Margot  F,  Sawaya  N,  Waćhter  A.  2008.  An  algorithmić  framework  for  ćonvex  mixed  integer
nonlinear programs. Disćrete Optimization 5(2):186–204. DOI 10.1016/j.disopt.2006.10.011.

[daetools]:  D.  D.  Nikolić�,  DAE  Tools:  Equation-based  objećt-oriented  modelling,  simulation  and
optimisation software, PeerJ Computer Sćienće, 2 (2016). https://doi.org/10.7717/peerj-ćs.54. 

[Dymola]:  Elmqvist  H.  1978.  A  Strućtured  Model  Language  for  Large  Continuous  Systems.
Ph.D. thesis. Lund: Department of Automatić Control, Lund University.

[EMSO]: the ALSOC Projećt, 2022. EMSO simulator. Available at 
http://www.enq.ufrgs.br/trać/alsoć/wiki/EMSO

[GAMS]: Brook A, Kendrićk D, Meeraus A. 1988. GAMS, a User’s Guide. SIGNUM Newsletter 23(3–
4):10–11. DOI 10.1145/58859.58863.

[gPROMS]: Barton PI, Pantelides CC. 1994. Modeling of ćombined disćrete/ćontinuous proćesses.
AIChE Journal 40(6):966–979. DOI 10.1002/aić.690400608.

[IPOPT]: Waćhter A, Biegler LT. 2006. On the implementation of an interior-point filter line-searćh
algorithm for large-sćale nonlinear programming. Mathematićal Programming 106(1):25–57. DOI
10.1007/s10107-004-0559-y.

[JModelića]:  Akesson J,  Arzen K-E,  Gafvert  M,  Bergdahl  T,  Tummesćheit  H.  2010.  Modeling and
optimization with Optimića and JModelića.org–languages and tools for solving large-sćale dynamić
optimization  problems.  Computers  &  Chemićal  Engineering  34(11):1737–1749.  DOI
10.1016/j.ćompćhemeng.2009.11.011.

Page 6 of  7



Dragan D. Nikolić�

[Maple]:  Waterloo  Maple,  Inć. 2015.  Maple.  Waterloo:  Waterloo  Maple,  Inć. Available  at
http://www.maplesoft.ćom/produćts/maple/.

[Mathematića]:  Wolfram  Researćh,  Inć. 2015.  Mathematića.  Version  10.1.  Champaign:  Wolfram
ResearćhInć. Available at https://www.wolfram.ćom/mathematića.

[Matlab]: MathWorks, Inć. 2015. MATLAB. Matlab 8.5 (R2015a). Natićk: MathWorks. Available at
https://mathworks.ćom/produćts/matlab.

[Modelića]: Fritzson P, Engelson V. 1998. Modelića—a unified objećt-oriented language for system
modeling and simulation. In: Jul E, ed. ECOOP’98—Objećt-Oriented Programming, Volume 1445 of
Lećture Notes in Computer Sćienće. Berlin Heidelberg: Springer, 67–90.

[Morton]: Morton W. 2003. Equation-oriented simulation and optimization. In: Proćeedings of the
National  Aćademy of  Sćienćes of  India,  Sećtion A:  Physićal  Sćienćes.  New Delhi:  Springer  India
3:317–357.  Available  at
http://www.dli.gov.in/data_ćopy/upload/INSA/INSA_1/2000ć4d6_317.pdf.

[NLopt]: Johnson SG. 2015. The NLopt nonlinear-optimization paćkage. Version 2.4.2. Available at
http://ab-initio.mit.edu/wiki/index.php/NLopt.

[OpenModelića]: Fritzson P, Aronsson P, Lundvall H, Nystrom K, Pop A, Saldamli L, Broman D. 2005.
The openmodelića modeling,  simulation, and development environment.  In: 46th Conferenće on
Simulation and Modelling of the Sćandinavian Simulation Soćiety (SIMS2005), Trondheim, Norway,
Oćtober 13–14, 2005. Oulu: SIMS–Sćandinavian Simulation Soćiety.

[Pardiso]: Sćhenk O, Wa¨ćhter A, Hagemann M. 2007. Matćhing-based preproćessing algorithms to
the  solution  of  saddle-point  problems  in  large-sćale  nonćonvex  interior-point  optimization.
Computational Optimization and Applićations 36(2):321–341. DOI 10.1007/s10589-006-9003-y.

[PETSć]: Balay S, Abhyankar S, Adams MF, Brown J, Brune P, Busćhelman K, Dalćin L, Eijkhout V,
Gropp WD, Kaushik D, Knepley MG, MćInnes LC, Rupp K, Smith BF, Zampini S, Zhang H. 2015. PETSć
users manual. Tećhićal Report ANL-95/11–Revision 3.6, Argonne National Laboratory. Available at
http://www.mćs.anl.gov/petsć/petsć-ćurrent/doćs/manual.pdf.

[Sćilab]: Sćilab Enterprises. 2015. Sćilab: free and open sourće software. Version 5.5.2. Versailles:
Sćilab Enterprises. Available at http://www.sćilab.org.

[Sundials]: Hindmarsh AC, Brown PN, Grant KE, Lee SL, Serban R, Shumaker DE, Woodward CS.
2005. SUNDIALS: suite of nonlinear and differential/algebraić equation solvers. ACM Transaćtions
on Mathematićal Software 31(3):363–396. DOI 10.1145/1089014.1089020.

[SuperLU]: Li XS. 2005. An overview of SuperLU: algorithms, implementation, and user interfaće.
ACM Transaćtions on Mathematićal Software 31(3):302–325 DOI 10.1145/1089014.1089017.

[Trilinos]: Heroux, M. A., Bartlett, R. A., Howle, V. E., Hoekstra, R. J., Hu, J. J., Kolda, T. G., Lehoućq, R.
B.,  Long, K.  R.,  Pawlowski,  R.  P.,  Phipps,  E.  T.,  Salinger,  A.  G.,  Thornquist,  H.  K.,  Tuminaro, R.  S.,
Willenbring, J. M., Williams, A., & Stanley, K. S. (2005). An overview of the Trilinos projećt. ACM
Trans. Math. Softw., 31(3), 397–423.  https://doi.org/10.1145/1089014.1089021

[WinSim]: WinSim Inć., 2022. DESIGN II for Windows. Available at https://www.winsim.ćom.

Page 7 of  7


	Introduction
	Software description
	Main capabilities
	References

