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Introduction

Large scale systems of non-linear (partial-)differential and algebraic equations are found in many
engineering problems. One of the methods to solve this type of problems is by using the equation-
based approach. According to this approach, all equations and variables which constitute the model
representing  the  process  are  generated  and  gathered  together.  Then,  equations  are  solved
simultaneously using a suitable mathematical algorithm. Equations are given in an implicit form as
functions of state variables and their derivatives, degrees of freedom (the system variables that
may vary independently), and parameters.

In general, a typical equation-based model consists of a coupled set of partial-differential equations
and  auxiliary algebraic  and  ordinary  differential  equations.  An  individual  partial-differential
equation is often treated as a distinct group of  equations –  a  kernel equation.  Kernel  equations
represent  a  homogeneous  group  of  identical  mathematical  expressions  operating  on  different
variables  and  can  be  efficiently  evaluated  on  both  general  purpose  and  streaming
processors/accelerators (and heterogeneous systems). Typical examples represent mass, heat and
momentum  balance  equations  and  various  scalar/vector  transport  equations.  The  auxiliary
equations represent, for instance, boundary conditions,  phase equilibrium, connectivity between
units and various process performance indicators. The auxiliary equations are evaluated on general
purpose processors.

In general, simulation programs for this class of problems are developed using:

 General-purpose programming languages such as C/C++ or Fortran, one of available suites
for scientific applications such as SUNDIALS[Sundials], Trilinos[Trilinos] and PETSc[PETSc] and high-
performance computing SDKs such as Intel oneAPI[oneAPI], AMD ROCm[ROCm], NVIDIA HPC[NVidia-

hpc] and ARM HPC[ARM-hpc].
 Libraries for finite element (FE) analysis and computational fluid dynamics (CFD) such as

deal.II[dealII],  libMesh[libMesh],  FEniCS[FEniCS],  Firedrake[Firedrake],  FreeFem++[FreeFem],  and
OpenFOAM[OpenFoam].

 Computer Aided Engineering (CAE) software for finite element analysis and computational
fluid dynamics such as HyperWorks[HyperWorks], STAR-CCM+ and STAR-CD[Siemens-MDE], COMSOL
Multiphysics[COMSOL], ANSYS Fluent/CFX[ANSYS] and Abaqus[Abaqus].

The equation-based problems are found in the process, chemical, petrochemical, pharmaceutical
and other engineering areas, natural sciences and financial systems. They are employed for tasks
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such as:  simulation,  optimisation,  parameter estimation,  sensitivity  analysis,  model  predictive and
optimal  control,  and  supply  chain  optimisation.  Their  numerical  solution  requires  the  following
computationally intensive tasks:

1. Numerical integration in time (requires evaluation of model equations, residuals for DAE
and right hand side for ODE systems).

2. Linear algebra operations (BLAS L1 vector-vector and a subset of the BLAS L2 matrix-vector
operations).

3. Solution  of  systems  of  linear  equations (both  direct  and  iterative  linear  solvers  require
computation of analytical derivatives).

4. Integration  of  sensitivity  equations (local  gradient-based  sensitivity  analysis  methods
require evaluation of sensitivity residuals).

Parallelisation of these tasks leads to a faster numerical solution.

Simulation programs can be parallelised at  different  levels  and,  for  maximum performance,  all
available resources should be exploited:

 Level 1: inter-node parallelism in a distributed memory system.
 Level  2:  intra-node task parallelism utilising  multiple  cores and streaming processors /

accelerators.
 Level 3: data parallelism utilising multiple vector units at a single work item level.

The task parallelism comes from a large number of cores in the processor/accelerator while the
data parallelism comes from support for vector instructions,  which make every compute unit  a
single-instruction multiple-data (SIMD) processor.

Different applications utilise different levels of parallelism.

 Simulation of large scale models requires a numerical integration of a single model on a
distributed memory system. They can take advantage of all three levels of parallelism.

 Sensitivity analysis requires a huge number of simulations performed simultaneously and
independently from each other in parallel.  In general, the task and data parallelisms are
used. The distributed memory systems can be employed as well since there is no inter-node
dependency.

 Optimisation requires a huge number of simulations performed typically sequentially.  In
general, they are performed on shared memory systems utilising task and data parallelisms.
However, many modern optimisation solvers provide parallel algorithms. In addition, some
solvers support execution on the distributed memory systems.

 Parameter estimation is a special class of  optimisation problems with the fixed problem
definition  and  the  objective  function  (i.e. least  squares).  Similarly  to  the  optimisation
problems, it can utilise all three levels of parallelism.

 Model Predictive Control / Optimal Control are optimisation problems that require very fast
simulations  (near  real-time  capabilities).  The  models  are  typically  small  scale  and
significantly  simplified.  Simulations  are  often  performed  on  embedded  systems  in  a
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sequential  fashion. Depending on the hardware,  the task and data parallelisms might or
might not be supported.

 Supply  chain  optimisation is  a  class  of  optimisation  problems  for  the  strategic  level
decisions,  such  as  the  number  of  plants,  the  modes  of  transport,  or  the  relocation  of
warehouses. In general, all three levels of parallelism can be employed.

Software description

The  Open Compute Stack (OpenCS) framework is a common platform for modelling of problems
described by large-scale systems of  differential  and algebraic  equations (ODE or DAE),  parallel
evaluation of  model equations on diverse types of computing devices (including heterogeneous
setups), parallel simulation on shared and distributed memory systems, and model exchange.

The framework provides a platform-independent binary interface for model description with the
data  structures  to  describe,  store  in  computer  memory  and  evaluate  large  scale  systems  of
equations.  The same model specification can be used on different high performance computing
systems and architectures. Model equations are specified in a symbolic form using the OpenCS API,
transformed into the  bytecode instructions or compute kernels  using the operator overloading
technique  and  stored  as  an  array  of  binary  data  (a  Compute  Stack)  for  direct  evaluation  by
simulators  on  all  platforms/operating  systems  (including  heterogeneous  systems).  Models  can
contain  a  coupled  set  of  kernel  equations  and  grouped  auxiliary  algebraic  and  differential
equations. The framework automatically generates C++ and OpenCL source code for kernels. The
compute  kernels  can  be  generated  for  automatic  vectorisation  or  explicitly  vectorised  by  the
framework.  The  framework  support  user-defined  functions  by  injecting  function  calls  into  the
kernel expressions. The source code for C++ shared library kernels is automatically compiled and
loaded by the framework and each group or kernel can be assigned to a different computing device
(processor or accelerator).

The OpenCS framework supports different architectural designs of modern supercomputers:

1. Large  number  of  processors  having many  cores  and  hardware  threads  and  wide  SIMD
registers (i.e. Fugaku machine installed at RIKEN in Japan).

2. Large  number  of  processors  equipped  with  GPU  accelerators  (most  supercomputers  in
USA/Europe).

For the first design option the framework provides vectorised compute kernels. Apart from 512 bit
AVX-512, the framework offers variable width vector kernels (i.e. for vector extensions such as SVE
2). Regarding the second design option, the OpenCS framework supports heterogeneous CPU/GPU
systems where compute kernels can be executed using the OpenMP API and the OpenCL framework
or one of performance portable programming models such as Kokkos and SYCL. 

The  OpenCS framework is based on several algorithms and methodologies for parallelisation of
equation-based simulation programs:

1. Parallelisation on heterogeneous computing systems[opencs-shared-memory].
2. Parallelisation on distributed memory systems[opencs-mpi].
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3. Parallelisation using compute kernels code generation techniques[opencs-kernels].

It consists of the following components:

 Model specification data structures for a description of general systems of differential and
algebraic equations (ODE or DAE).

 Method to describe, store in computer memory and evaluate model equations on diverse
types of computing devices (the Compute Stack approach).

 Algorithm for partitioning of general systems of equations in the presence of multiple load
balancing constraints.

 Algorithm for inter-process data exchange.
 An Application Programming Interface for model specification, parallel evaluation of model

equations and model exchange.
 An Application Programming Interface for specification of kernel equations.
 Method  for  generation  of  the  source  code  for  kernels  in  multiple  languages  targeting

different APIs/frameworks.
 Method for evaluation of coupled kernels and auxiliary equations on multiple computing

devices/architectures.
 Method for automatic and explicit vectorisation of compute kernels.
 Cross-platform simulation software for  parallel  numerical  solution of  general  ODE/DAE

systems of equations on shared and distributed memory systems.
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Main capabilities

The  OpenCS models can be developed in C++ and Python or exported from simulators using the
provided API. The architecture and the main components of the framework are illustrated in Fig. 1.
The OpenCS framework provides the following libraries:

 cs_machine.h (header-only Compute Stack Machine implementation in C99).
 libOpenCS_Evaluators (sequential,  OpenMP  and  OpenCL  Compute  Stack  Evaluator

implementations).
 libOpenCS_Models (Compute  Stack  Model,  Compute  Stack  Differential  Equations  Model,

Compute Stack Model Builder and kernel generator implementations).
 libOpenCS_Simulators (ODE and DAE simulators implementations).

and a standalone simulator (csSimulator, for both ODE and DAE problems).

Figure 1. The structure and the main components of the OpenCS framework.

In the  OpenCS approach, the model specification contains only the low-level information directly
required by solvers and, in general, it can be generated from any modelling software. The OpenCS
model  specification,  represented  by  a  Compute  Stack  Model,  provides  a  common  interface  to
ODE/DAE solvers and can be generated using the OpenCS API in two ways (Fig. 2):

1. Direct implementation in C++ or Python application programs.
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2. Export of existing models from third-party simulators.

Figure 2.  The  OpenCS modelling approach.  The low-level  model  specification is  created using the
OpenCS API and stored in a Compute Stack Model data structure which provides a generic interface to
ODE/DAE solvers. Model equations, transformed into the bytecode instructions and stored as an array
of binary data, are evaluated using the Compute Stack Machine kernels managed by a Compute Stack
Evaluator.

The model specification data structures are stored as files in a binary format and used as inputs for
parallel simulations on all platforms. This way, they provide a simple binary interface for model
exchange. Model equations are stored as an array of binary data (bytecode instructions). A limited
set of bytecode instructions is utilised (only memory access to supplied data arrays and unary and
binary mathematical operations). Individual equations (Compute Stacks) are evaluated by a stack
machine (Compute Stack Machine) using the Last In First Out (LIFO) queues or executed as C/C++
or OpenCL compute kernels. Systems of equations are evaluated in parallel using a Compute Stack
Evaluator interface which manages the Compute Stack Machine kernels. Two APIs/frameworks are
used for parallelism:

 The  Open  Multi-Processing  (OpenMP)  API  for  parallelisation  on  general  purpose
processors.

 The  Open  Computing  Language  (OpenCL)  framework  for  parallelisation  on  streaming
processors and accelerators (GPU, FPGA, heterogeneous CPU+GPU and CPU+FPGA systems).

Switching to a different computing device for evaluation of model equations is straightforward and
controlled by an input parameter.
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A generic simulation software is provided by the framework to utilise the low-level information
stored  in  Compute  Stack  Models[opencs-mpi].  Simulations  can  be  executed  sequentially  on  a  single
processor  or  in  parallel  on  message  passing  multiprocessors  (Fig.  3).  Simulation  inputs  are
specified in a generic fashion as files in a (platform independent) binary format. The input files are
generated using  the  OpenCS API,  one set  per processing element  (PE))  and contain  the stored
model specification data structures and solver options. Simulation results are available in HDF5 or
Comma Separated Value (.csv) formats.

Figure 3. Parallel simulation using the OpenCS framework.

On shared memory systems simulations are executed on a single processing element utilising the
available  computing  hardware  such  as  multi-core  CPUs  and  GPUs  (illustrated  in  Fig.  4).  On
distributed memory systems simulations are executed on a number of processing elements where
every processing element integrates one part (sub-system) of the overall ODE/DAE system in time
and performs an inter-process communication to exchange the data between processing elements.
Hence, the software for numerical solution on shared memory systems is used as the main building
block for distributed memory systems (given in Fig. 5).

Figure 4. OpenCS simulation on shared memory systems.

Page 7 of 10

https://www.hdfgroup.org/


Open Compute Stack (OpenCS) Framework

Figure 5. OpenCS simulation on distributed memory systems.

The framework offers the numerous benefits. A single simulation software is used for numerical
solution of systems of differential and algebraic equations on all platforms. Model equations, either
stored as the bytecode instructions or generated as compute kernels, can be evaluated on virtually
all  computing devices with no additional  processing.  Each group of  equations or kernel  can be
assigned to a different computing device (controlled by an input parameter). The low-level model
specification data  structures,  stored as files  in binary format,  are  used as an input for parallel
simulations on all platforms and provide a simple platform-independent binary interface for model
exchange. The partitioning algorithm can accurately balance the computation and memory loads in
all important phases of the numerical solution.

The quality of the software is a very important aspect and the formal code verification techniques
(such as the Method of Exact Solutions and the Method of Manufactured Solutions) and the most
rigorous acceptance criteria (such as the order-of-accuracy) are applied to test almost all aspects of
the software.

The typical use-cases of the OpenCS framework include:

 Development of custom large-scale models in C++ and Python.
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 Parallel  evaluation  of  model  equations  (i.e. in  simulators  with  no  support  for  parallel
evaluation or using the computing devices which are currently not utilised).

 Parallel simulation on shared and distributed memory systems.
 Model-exchange.
 Use as a simulation engine for Modelling or Domain Specific Languages.
 Benchmarks between different simulators, ODE/DAE solvers, computing devices and high

performance  computing  systems  (since  a  common  model-specification  is  used  on  all
platforms,  OpenCS models  can  be  used  to  benchmark  memory  and  computation
performance of individual computing devices or high performance computing systems; for
example, benchmarks between heterogeneous CPU/GPU and CPU/FPGA systems could be
performed without re-implementation of the model for a completely different architecture).
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