Home News Downloads Documentation
Home Downloads Introduction Getting Started Examples
Contact Publications

Citing DAE Tools

If you use DAE Tools in your work then please cite the following article:
DD Nikolić. DAE Tools: equation-based object-oriented modelling, simulation and optimisation software. PeerJ Computer Science 2:e54, 2016. doi:10.7717/peerj-cs.54 BibTeX

DAE Tools and OpenCS articles

Articles on the implementation, algorithms and data structures:

  1. DD Nikolić. DAE Tools: equation-based object-oriented modelling, simulation and optimisation software. PeerJ Computer Science, 2016. doi:10.7717/peerj-cs.54
  2. DD Nikolić. Parallelisation of equation-based simulation programs on heterogeneous computing systems. PeerJ Computer Science, 2018. doi:10.7717/peerj-cs.160
  3. DD Nikolić. Parallelisation of equation-based simulation programs on distributed memory systems. Zenodo, 2023. doi:10.5281/zenodo.8037490
  4. DD Nikolić. Open Compute Stack (OpenCS): a framework for parallelisation of equation-based simulation programs. Zenodo, 2023. doi:10.5281/zenodo.8037474
  5. DD Nikolić. Parallelisation of equation-based simulation programs using kernel code generation techniques. Zenodo, 2023. doi:10.5281/zenodo.8037508
Technical reports:
  1. DD Nikolić. Open Compute Stack (OpenCS) Framework (2023). link
  2. DD Nikolić. DAE Tools Modelling, Simulation and Optimisation Software (2023). link
DAE Tools and OpenCS presentations:
  1. Introduction to DAE Tools link
  2. Overview of DAE Tools link
  3. Introduction to the OpenCS framework link
  4. Overview of the OpenCS framework link

Publications using DAE Tools and OpenCS

Articles and software using DAE Tools and OpenCS:

  1. BP Setzler, Z Zhuang, JA Wittkopf, Y Yan.
    Activity targets for nanostructured platinum-group-metal-free catalysts in hydroxide exchange membrane fuel cells.
    Nature nanotechnology, 2016. doi:10.1038/nnano.2016.265
  2. Y Guo, RB Smith, Z Yu, DK Efetov, J Wang, P Kim, MZ Bazant, LE Brus.
    Li intercalation into graphite: direct optical imaging and Cahn–Hilliard reaction dynamics.
    J. Phys. Chem. Lett., 2016. doi:10.1021/acs.jpclett.6b00625
  3. RB Smith, MZ Bazant.
    Multiphase porous electrode theory.
    Journal of The Electrochemical Society, 2017. doi:10.1149/2.0171711jes
  4. RB Smith, E Khoo, MZ Bazant.
    Intercalation kinetics in multiphase-layered materials.
    The Journal of Physical Chemistry, 2017. doi:10.1021/acs.jpcc.7b00185
  5. RB Smith.
    Nonequilibrium thermodynamics of porous electrodes for lithium-ion batteries.
    2017. http://hdl.handle.net/1721.1/111406
  6. NJJ de Klerk, A Vasileiadis, RB Smith, MZ Bazant, Marnix Wagemaker.
    Explaining key properties of lithiation in -anatase Li-ion battery electrodes using phase-field modeling.
    Phys. Rev. Materials, 2017. doi:10.1103/PhysRevMaterials.1.025404
  7. JR Leal, A Romanenko, LO Santos.
    Daedalus Modeling Framework: Building First-Principle Dynamic Models.
    Industrial & Engineering Chemistry Research, 2017. doi:10.1021/acs.iecr.6b03110
  8. AT Elve, HA Preisig.
    From ontology to executable program code.
    Computers & Chemical Engineering, 2018. doi:10.1016/j.compchemeng.2018.09.004
  9. H Cui, F Li.
    ANDES: A Python-Based Cyber-Physical Power System Simulation Tool.
    2018 North American Power Symposium (NAPS), 2018. doi:10.1109/NAPS.2018.8600596
  10. A Belmonte, J Garrido, J Jiménez, F Vázquez.
    Recomputing Causality Assignments on Lumped Process Models When Adding New Simplification Assumptions.
    Symmetry, 2018. doi:10.3390/sym10040102
  11. CP Triantafyllidis, LG Papageorgiou.
    An integrated platform for intuitive mathematical programming modeling using LaTeX.
    PeerJ Computer Science, 2018. doi:10.7717/peerj-cs.161

Copyright: Dragan D. Nikolić, DAE Tools Project 2009-2023